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Abstract—The graphics pipeline is an algorithm used to
convert 3 dimensional data from a 3D model into a 2D image.
However, the construction of the algorithm depends on many
graphics innovations made from the 1950s to the 2000s. This
paper will discuss the evolution of the graphics pipeline, starting
from the first algorithms to the modern graphics pipeline.

I. INTRODUCTION

Computer graphics is a fundamental branch of computer
science. Its existence has supported the growth of the gaming,
film, aerospace, and medical industries. In modern times, we
see its use in AI/ML for image/model generation and computer
vision. From this, it is valid to say ”where there is virtual
visualization, there is computer graphics in some way or
another”.

The fundamental algorithm that allows the aforementioned
industries to thrive is the graphics pipeline. To put simply, the
graphics pipeline is an algorithm that converts 3D data from a
3D model into a 2D image. The individual steps of the pipeline
emerged gradually as people invented technologies and discov-
ered new algorithms. The pipeline serves as an artifact of the
history from the dawn of computer graphics. In the follow-
ing sections, I will review the graphics pipeline,uncover the
primitive beginnings of the pipeline, discuss the innovations
that exponentially increased the development of the pipeline,
and report on the competition that paved the way for GPU
rendering [21].

AN OVERVIEW OF THE GRAPHICS PIPELINE

Input Data

The input data for the graphics pipeline is a 3D object,
specifically, a set of vertices each defined by a vector-like type.
Each vertex may also have other data associated with them
such as color, normal vectors, texture coordinates, etc. The
pipeline must also take in a set of indices of the vertices, which
will be used in input assembly to form primitive triangles.
Finally, uniform variables (such as camera matrices, light
positions, time variables, etc.) are utilized by shaders to store
data that is constant for all execution contexts.

Vertex Shader

The vertex shader is the first stage of the graphics pipeline.
It takes in the vertex data and the uniform data from an
application and outputs new vertex data per vertex. In mod-
ern times, the shader is a fully programmable program, so
programmers may encode any logic they want as long as they
obey the shading language’s syntax. However, there were times
in history where this stage was fixed function, implemented

purely in highly configurable hardware. The term shader ap-
plies to both cases, and we will see why programmability was
desirable as time went on. Some common operations done on
the vertex shader includes projection/clipping transformations,
shading/lighting calculations, and normal computations [3].

Rasterization

This fixed-function stage first constructs triangles from the
outputted vertices (input assembly). It then traverses them to
determine which pixels (or fragments) on the screen are lit up
by checking whether part of the pixel overlaps the triangle.
This stage also interpolates the data (from the previous stage)
among each pixel between the vertices of the triangles for
calculations in the next stage[1].

Pixel Shader
Following rasterization, we run a pixel shader program on

each pixel outputted. Like the vertex shader, this stage is
also a fully programmable program that was historically fixed-
function. The output of the pixel shader is the actual color of
the pixel on the screen, along with the depth and, optionally,
an opacity [1]. These outputs are then sent to a buffer, where
merging occurs.

Merging
The merging stage takes in the fragment values and

tests/blends them with current values on a framebuffer. De-
pending on the result of that operation, the stage either replaces
the current value on the buffer with the incoming value,
discards the incoming value, or creates and places a new
value from the incoming and current values. After that, display
hardware (the screen) will read the values from the buffer and
exhibit that value (the color and intensity) in the corresponding
pixel. When all the pixels on the screen glow, we see an image
of the 3D model we started with[1].

I would like to clarify two subtleties for the reader. First,
the pipeline may seem slow, but it is actually done multiple
times per second. Optimally, values should be generated as
fast as the refresh rate of the display hardware. If not, there
will be visual artifacts such as lagging and screen tearing. This
leads to the next subtlety that the pipeline is called a pipeline
because each stage may be executed in parallel, decreasing the
latency per vertex stream. This was not true when the pipeline
started out, however.

II. THE BEGINNINGS OF COMPUTER GRAPHICS

Whirlwind I (1951) and SAGE (1953)

Our story begins with military defense (as many computer
innovations were). The United States was in the Cold War



Fig. 1: The modern graphics rendering pipeline

against Russia and were anticipating an aerial attack from
them. The US Air Force wanted to develop a mechanism that
can alert stationed pilots about nearby enemy jets and their
locations [9] [22].

Thus sparked the invention of the prototype system, the
Whirlwind I, by MIT in 1951 and its successor, the Semi-
Automatic Ground Environment (SAGE for short) by IBM,
in 1953. The idea was to have an operator sit in front of a
radar screen, which displayed points corresponding to nearby
aircraft. They would then use a light pen to select the aircraft
on the screen and in response, the system would display
information about the aircraft [17].

This invention is regarded as the first-ever system in com-
puter graphics because it was the first time a computer was
connected to a CRT (cathode-ray tube) display. It is also worth
mentioning that this is the first ever work in human computer-
interaction because of its interactivity with a human operator
[16].

Sketchpad (1963)

Following the trend of interactive systems, in 1963, Ivan
Sutherland wrote his doctorate dissertation on Sketchpad, an
interactive drawing system. His vision was to enable easier
use of computers by providing an interactive interface for the
user, specifically designers [26]. So his system included many
features useful for them, which would prove to be seminal
computer graphics ideas in the future.

First, complex figures in Sketchpad could be composed of
simpler figures. To give an example, a polygon is interpreted
as multiple lines and each line is interpreted as 2 connected
points each with an x-y coordinate. This concept is eerily
similar to the idea of object-oriented programming, where
we modularize data into objects in order to create multiple
instances of them[25]. Next, instead of manually drawing
primitives, Sketchpad allowed users to specify constraints to

draw. For instance, users only needed to specify the end points
to draw lines. So if users ever needed to change the design,
they only needed to change the endpoint instead of redrawing
the entire line. Finally, the system could perform the simple
2D transformations: translations, scaling, and rotations. This
enabled users to view and zoom into different parts of their
drawings and edit them on the fly. This also implies that the
system had screen-mapping capabilities to determine which
parts of the drawing to display [26].

Although his work was incredibly seminal, it did not catch
on with the public due to the high costs of CAD (computer-
aided design) systems. Sutherland’s work would only see
light in the aerospace and automobile industries at the time.
Additionally, there were also many limitations of his system.
But before presenting that, the reader should understand the
significance of vector-scan displays and raster-scan displays,
which I will briefly explain below.

Vector scan Displays

The aforementioned systems used vector scan (a.k.a. ran-
dom scan) displays with cathode ray tube technology. A
display processor reads instructions from a refresh buffer
in its display file. These instructions are used to direct an
electron gun sitting in the back of the tube to fire a beam at a
phosphorescent screen only towards parts of the screen where
the picture is drawn. When the beam hits the screen, the screen
emits light for a few seconds, so for the image to persist, the
picture must be retraced. So the display processor reads from
the refresh buffer multiple times per second to keep the image
on the screen. To modify the image displayed, instructions are
inserted, removed, or changed on the buffer [10].

At the time, vector scan displays were enough to get the job
done on graphical systems. Their main advantage was that they
created very smooth and straight lines on the screen. However,
vector scan displays suffered from some major flaws. To begin,



Fig. 2: A vector scan display. The beam only strikes the regions
of the screen with showing the image.

Fig. 3: A raster scan display. Notice that display technology
is independent of display method.

the display flickered especially when many lines were drawn
in a region. Although rotations and scaling was possible, they
were expensive operations that took time when manipulating
the buffer. Finally, there was no way to reliably create color.
These flaws made it impossible for vector scan displays to do
two ambitious tasks: 3 dimensional drawings and animation
[26].

Raster-scan Displays

As the price of memory when down in the early 1970s,
vector scan displays were replaced with raster scan displays.
In raster scan displays, the screen is divided into an array
of picture elements (a.k.a. pixels). The refresh buffer stored
the intensity and color of every pixel on the screen. As the
refresh buffer was updated, each pixel would be updated in a
scan-line fashion, left-to-right and top-to-bottom. Again, the
process was repeated multiple times per second [10].

When analyzing the advantages of vector scan displays and
raster scan displays, it’s clear why raster scan displays are
superior. It provided color and was flicker-free, but it was also
capable of displaying continuous tone images (images where
the color transitions smoothly). Because of the cheap costs of
memory, raster scan displays were much cheaper than their
vector scan counterparts. This all came at a small sacrifice:
lines were no longer truly smooth as a consequence of dividing
the screen. The visual artifacts are called jaggies due to their
jagged edges [17]. In the modern age, this problem is mitigated
with anti-aliasing techniques, such as fast approximate anti-
aliasing (FXAA) or multisample anti-aliasing (MSAA).

First ”Pipeline”

An image of our first pipeline is shown in Figure 4. Input
data is sent to the application program, transformed and sent to
e a graphics system, where it sits in a refresh buffer. Regardless
of display method or display technology, the display processor
reads the refresh buffer multiple times per second and displays
the output image on the display hardware.

The mechanism shares some similarities with our modern
pipeline. For instance, transformations are done on the data
before it is displayed. This logically makes sense; data needs
to be converted to the right form before it may be processed in
the next stage. Additionally, the refresh buffer is functionally
the same as the framebuffer in our modern pipeline. The only
difference here is that the framebuffer has more features and
can deal with 3D data.

Despite the similarities, they have glaring differences. First,
the graphics system acts as a pass-through between the input
and application data. We will see that input gets modularized
out of our pipeline as time goes on. Second, the mechanism
is not a pipeline. The concept of pipelining was not invented
until the 1980s, so our mechanism was done sequentially with
no parallelization.

III. GROWTH AND DEVELOPMENT

Innovations at the University of Utah (1970s)

The 1970s saw many innovations in 3D computer graphics,
particularly from the great minds at the University of Utah[12].
Their work brought to light the problems that needed to be
solved by the graphics rendering pipeline. To mention some
notable work:

• Realistic Lighting Models: Henri Gourand and Bui Tuong
Phong invented Gourand shading and Phong shading
models in 1971 and 1973, respectively. Gourand shading
was an improvement upon flat shading (specifying a color
per every flat surface) by interpolating the normals across
the surface of the object between vertices [2]. Phong
shading was an improvement upon Gourand shading,
which missed highlights and had Mach banding, by
computing lighting per-pixel, using the point each pixel
projects onto the surface [4].

• Texture Mapping: Edwin Catmull invented texture map-
ping in 1974, a technique that maps images onto 3D
objects to give more detail that is not inherent in the



Fig. 4: The first ”pipeline”. User input is handled by the graphics system and sent to the application program.

geometry. The idea was to specify a coordinate between
(0,0) and (1,1) representing the top left and bottom right
corners of the images, respectively, at each vertex and
map the regions between each vertex to the corresponding
region on the image. This could be extended to a tech-
nique called bump mapping (invented by James Blinn in
1978) where we use an image to represent the normal at
each vertex, giving the object a wrinkly texture [13].

• Z-buffering: Catmull and Wolfgang Straßer discovered z-
buffering (a.k.a. depth testing) independently in 1974. It
was a technique to determine what color should be shown
on the image if objects occlude each other from view.
Fragments looking to replace their correspondent on the
framebuffer in the same render loop are successful, only if
their z-value is smaller than the correspondent’s (meaning
that fragment of the surface is closer to the camera view
than the other) [2].

• Curves: Martin Newell constructed one of the first
models from Bézier curves, the Utah Teapot, in 1975.
This enabled authoring objects with equations as opposed
to explicitly specifying points, which is tedious.

As previously said, these stages brought about problems and
solutions in computer graphics and thus changed our graphics
rendering mechanism. It added new stages like shading and
texturing and cemented others like buffering. With so many
algorithms, programmers desired a standard to organize and
keep implementation simple, leading to the next feat of the
1970s.

Standardization of Computer Graphics APIs (1980-1995)

It was around the mid-1970s that industry leaders and
pioneers decided to come together and form standards. The
overall motivation was portability. Up until now, hardware
vendors each had their own set of graphics features. Pro-
grammers needed to learn how each machine operated before
they could create applications on the machine. This was
both tedious and wasteful because programmers who wanted
their application to work on two machines from different
vendors needed to expend time to study the workings of both
machines. A standard would require the vendors to provide

common functionality that the programmer would be familiar
with and significantly reduce the time-to-market of graphics
applications [6]. In practice, however, standards were seldom
agreed upon when business incentives is involved.

Among the first were ACM Core in 1975, Graphics Kernel
System (GKS) in 1977 and the Programmer’s Hierarchical
Interactive Graphics System (PHIGS) in 1979. These standards
specified APIs (application programming interfaces) that did
not encapsulate all that was capable at the time, and because
of the rapid development of graphics algorithms, they did not
survive (despite PHIGS’s attempts to create a 3D version later
on). However, the development of PHIGS pressured Silicon
Graphics Inc. (SGI) to create OpenGL in 1992, an open source
version of their proprietary graphics library IrisGL. OpenGL
was originally only adopted by SGI’s workstation machines,
but as time went on, there was a widespread adoption among
a majority of CAD workstations [6]. Microsoft would release
their own API, DirectX, in 1992 for use on personal comput-
ers. The years following that would see direct competition be-
tween the two APIs, each trying to support a feature the other
doesn’t have. Silicon Graphics Inc. would appoint a committee
to manage the standard before going bankrupt, while DirectX
would continue supporting a wider range of hardware. When
the committee was dissolved and management was given to
the Khronos Group, DirectX had cemented itself in the world
of graphics APIs. It took many revisions of OpenGL to get
it up to par with DirectX.Nowadays, the main APIs used in
the industry are Vulkan (from Khronos), OpenGL(used for
legacy support and education), DirectX 18 (from Microsoft)
and Metal (from Apple) [18].

Pixel Planes (1981) & The Geometry Engine (1982)

The 1980s also saw the advent of parallel processing. Pixel
Planes, a project started at the University of North Carolina
by Henry Fuchs and John Poulton, set out to create a VLSI
system that would permit the use of computer graphics in
fields outside of computing such as chemistry and biology.
Their mantra was ”One processor per pixel!” with goals of
improving the rendering time. Their system was essentially
parallelizing rasterization, pixel processing and buffering with



Fig. 5: The second pipeline. Notice how everything is fixed-function.

hardware because it was capable of identifying pixels that
lie in the particular polygon, determine their visibility, and
shade the pixel simultaneously. As a result, they iterated
over the polygons of the scene rather than the pixels of the
screen during runtime, similar to modern graphics cards. In the
end, their system was estimated to process 15,000 to 30,000
polygons per second [11].

In 1981, Jim Clark founded Silicon Graphics Inc. with the
intention of creating workstations optimized for CAD. Their
systems were based on the Geometry Engine, a VLSI proces-
sor that optimized the geometric computations of the graphics
pipeline. Specifically, it was a four component vector function
unit that could perform floating point operations. When 12
of them are pipelined together, the system accelerated matrix
multiplication, clipping, and scaling[7]. With respect to the
pipeline, the chip proved that transformation can be taken
out of the CPU workload and concurrently processed, like
in modern GPUs. In fact, this design was inspirational for the
development of transform & lighting hardware in the 1990s.

All in all, Pixel Planes and the Geometry Engine proved that
graphics rendering is optimizable and parallelizable, making
them precursor technologies of the modern GPU.

Second Pipeline

At this age, the pipeline(Figure 8) is starting to look more
like our modern pipeline. The pipeline takes in vertices, trans-
forms them, applies vertex shading, rasterizes the polygons
created from the vertices, and applies pixel shading and z-
buffering before being displayed on the screen. Additionally,
some operations like rasterization and shading are parallelized,
compounding the benefits of pipelining. In the next section,
we will see chips become better and faster at rendering while
also becoming more programmer friendly.

IV. THE BIRTH OF THE PROGRAMMABLE GPU

Shade Trees (1984)

The idea for programmable graphics hardware started in
1984, when Robert Cook published his paper on Shade Trees.
Cook noticed that shaders (which were implemented as fixed
function hardware at the time) was becoming highly config-
urable. However, because the hardware was fixed, it forced
all surfaces to use the same lighting algorithm. Additionally,

hardware resources would be wasted if the user chose to use
simple lighting models [8].

Programmability would solve these issues. Associating dif-
ferent surfaces with different programs can create a variety
of shading effects in the same scene. Hardware resources are
allocated on execution of the program, allowing both simple
and complex programs to use only the hardware they need.

To implement this, Cook proposed organizing the shader
logic into a syntax tree and evaluate it post order. The leaves
of the tree would be input parameters, while the nodes are the
operators. The root of the tree would output the final color.
This idea implied the need for a shading language with basic
mathematical operations [8].

Cook’s work was first realized in Pixar’s Renderman In-
terface in 1988. The interface implemented programmable
shaders in software, so shaders were run on the CPU. This
would set the path for programmable shaders on graphics
cards, as we will see in the next section [1].

First GPUs (1996 - 2002)

It would be awhile before programmable shading is realized
in hardware. Meanwhile, graphics companies were developing
new 3D graphics accelerators every year, trying to best their
competitor’s specifications as well as their own. Some major
chips that were developed over the course of this period
includes:

• 3dfx Voodoo I (1996): This chip was the first consumer 3d
graphics accelerators. Its development led to the growth
of PC gaming as an industry. [23]

• 3DLabs Oxygen GVX1 (1999): This chip was the first
to integrate programmable transform & lighting (T&L).
3DLabs coined the term GPU (Geometry Processing
Unit). [18]

• NVIDIA Geforce 256 (2000): This chip was marketed as
the world’s first GPU (Graphics Processing Unit). It had
integrated T&L, but no real programmability yet.[1]

• ATI Radeon R100 (2000): This chip was ATI’s response
to NVIDIA’s Geforce 256. It performed significantly
better.[20]

• NVIDIA Geforce 3 (2002): This chip marked the turning
point of graphics controllers. It had true programmable



Fig. 6: A timeline of important GPUs developed between the late 1990s and early 2000s [27].

vertex shaders within its vertex engine and highly con-
figurable fragment shaders via texture shaders. [15]

Clearly, the 1990s saw a trend towards higher comput-
ing power and more programmer customizability. NVIDIA’s
success made it a major supplier in the industry as other
companies fizzled out of existence.

Trouble with APIs (2000-2006)

This isn’t the end though. Although the hardware is pro-
grammable they may have features that APIs do not support.
Each API had a different way to resolve this issue. For
instance, Microsoft made sure to work closely with graphic
card manufacturers like NVIDIA to make sure DirectX was
consistent with their hardware. This was the case when the
Geforce 3 came out with direct support for Shader Model 1
(the shading standard for DirectX 8). Another way to resolve
this was to allow manufacturers to create their own extensions
to the API as OpenGL did. Although this did allow software to
run on that particular piece of hardware, this made the standard
counterintuitive since extensions were proprietary.

As an example, the Geforce 3 supported pixel shading, as
did ATI’s Radeon 8500. To support the feature for both of
those cards, Microsoft had made sure their API works for both
chips, writing the appropriate drivers. However, to support
OpenGL, NVIDIA and ATI each wrote their own extensions
because of lack of support on OpenGL’s end. For the OpenGL
programmer, this meant that if their program used NVIDIA’s
extension, it would not work on the Radeon 8500 and vice
versa. The programmer would be forced to write a new
program for the Radeon 8500, which would be no different
from when OpenGL didn’t exist. This failure on OpenGL’s part
is one of the reasons why Windows is the de-facto standard
OS for gaming (among others like the widespread use of
Windows). OpenGL’s problems were later resolved when the
Khronos Group took over OpenGL’s management in 2006 [5].

Unified Shading Model (2006)

Aside from API issues, 2006 marked an important decision
to unify shaders. In Microsoft’s standard, it was called Shader
Model 4.

Previously, vertex engines and fragment engines had highly
specific and different instruction sets. This was unideal for
manufacturers because they had to develop different hardware
for the two features. It was also inefficient because if a
workload only used one engine, the hardware for the other
engine is wasted [14].

The solution to this problem is to unify the shaders, that
is, to make vertex and fragment shading hardware have the
same capabilities and use the same instruction sets. This means
that we may partition hardware appropriately for vertex and
fragment shading based on the demands of each. It was easier
to program (Nvidia created CUDA for this) and manufacture
and best of all, it didn’t affect legacy code. Non-unified APIs
can run on unified shader architectures and unified APIs can
run on non-unified architectures [19].

V. CONCLUSION

To end, in this paper, I have discussed how the graphics
rendering pipeline is a historical artifact of the innovations
in computer graphics. I have discussed how it changed over
time and how each stage was formed by a major seminal
achievement in computer graphics.

To review the pipeline again, we start with our vertex data,
2D or 3D, that we want to display. The data is processed by a
shader program that transforms the vertices and calculates new
data for lighting/shading algorithms. A rasterizer uses highly
parallelized hardware to assemble the vertices into triangles
and determine which pixels in screen space are lit up. We then
run a shader on each of these pixels to compute the output of
the lighting/shading algorithms. Finally, we place our result in
a buffer that can be modified for accuracy before it is read by
the display hardware and outputted.



From this, it is clear that the pipeline’s development is
analogous the innovations in computer graphics and will surely
change as time goes on. In fact, we may have new pipelines
to serve different purposes such as raytracing (where rays are
simulated and bounced around the environment) and GPGPU
computing (where the GPU is used as a highly parallelized
processor [24]). So when the time comes, I hope someone
will appreciate the history of the pipeline and document it as
I have done in this paper.
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