
A Survey on Peer-to-peer Network Architectures in
Video Games

Arrian Chi
alienchi@ucla.edu

Abstract—Traditionally, game developers develop online mul-
tiplayer features by leveraging server-client architectures due to
its simplicity, security, and synchronization benefits. However,
research conducted in the last 2 decades has shown that im-
plementing networked features with peer-to-peer architectures
can theoretically incur great benefits, including robustness, lower
latency, and higher scalability. In this paper, we discuss the
primary problems in gaming, the limitations of traditional server-
client architectures, various techniques to realize the peer-to-
peer solutions, and finally, the use of peer-to-peer in commercial
games.

I. INTRODUCTION

The video game industry is one of the biggest entertainment
industries in the world. In 2022, the global gaming industry
generated an estimated $184.4B in revenue, compared to the
music industry’s $26.2B and the movie industry’s $26B [4].
The industry is only going to grow larger, with a projected
revenue of $583.69 billion in 2030. Online games accounted
for the largest revenue share of around 44% [1]. With so much
money involved, it is crucial that the development, deploy-
ment, and maintenance of games is executed as optimally as
possible.

When developing online multiplayer games, the number one
priority is a playable gameplay experience. Investigations have
shown that game-related network factors have a significant
influence on a player’s quality of experience [14]. Network
issues frequently lead to players leaving the game, so if
developers want to increase the quality of their game, they
must consider addressing the underlying network issues. On a
high level perspective, these may include:

• Connectivity: Players need to have a means of interacting
with each other across the internet. The game needs
to match players to each other, implying the need to
aggregate player data somewhere for group matching.
This is usually called matchmaking, a process that takes
in a list of players, and outputs groups created from this
list.

• Scalability: As a game’s player-base grows, the resources
required to support them increases. Developers must
formulate ways to reduce overhead in hardware and
communications while maintaining a playable gameplay
experience. There are multiple ways to do this, most
commonly by buying new hardware to run multiple
instances of the server program in different geographic
locations of the world. However, research shows that this
method starts to incur diminishing returns.

• Latency: The logic for the game’s main loop is executed
several times a second. This includes sending/receiving
data to servers/clients, processing the responses, and ren-
dering the output on the screen. To provide smooth game-
play, the game loop must keep up with the screen’s frame
rate, thus latency of game state intra/intercommunication
must be minimized. Usually called ”lag” in gaming
communities, latency issues can arise from a multitude
of areas, such as poor hardware performance, connec-
tivity issues, or unoptimized code. Solutions encompass
improving these mentioned areas or completely hiding
latency to provide the illusion of real-time gameplay.

• Synchronization: Because of latency issues, packets sent
between players may be delayed or corrupted. The game
needs to reason about these packets and order them in
chronological order to ensure fairness and consistency
in gameplay. Due to time constraints, I will not be
delving into this issue, but it is important to note that
synchronization is a major issue in networked games.

• Security: Online games must have a mechanism of pre-
venting/punishing cheaters. Most developers focus on the
former by using modern security techniques, but the latter
is also effective at deterring players from hacking their
clients. This issue is very important in competitive games,
since players with unfair advantages ruin the gameplay
experience of other players. Additionally, good security
is important for games with microtransactions to ensure
that the game economy itself does not implode and hurt
the game’s financial model [18].

On the lower level perspective concerning implementation,
online multiplayer game developers must choose a networking
architecture to serve as the networking mechanism for their
game. Most commercial games leverage the server-client ar-
chitecture to connect their players. To put simply, all players
run clients which connect to a server. The server serves
as a central hub for all input messages, synchronizing the
game state and sending this data back to the clients. The
client handles the dispatch of keyboard/controller input from
players and renders the state output from servers. The server-
client architecture is appealing to developers because of its
synchronization property as well as its ease of implementation
and enhanced security by design (game state logic is protected
by server, which is owned by developers) [14].

But there are some major flaws in server-client architectures.
First, servers act as single points of failures. If the server

hosting a game shuts down for whatever reason, then the game
is also shutdown. Players are unable to play the game dur-
ing this time, potentially hindering the gameplay experience.
Additionally, servers can serve as a bottleneck, increasing
latency. If the computational load suddenly increases and the
hardware cannot process within the projected timespan, the
server imposes major consequences on the latency. Finally,
servers are expensive to maintain compared to a client. Game
developers need to ensure servers are up-to-date, secure, etc.
If the playerbase is considerably large, then more machines
need to purchased and maintained, incurring more costs on
the developers [5].

Peer-to-peer (P2P) architectures directly solve the problems
server-client architectures have. By design, peer-to-peer does
not rely on a central communication point to redirect mes-
sages, thus the possibility of having single points of failures
and bottlenecks are dependent on the average performance of
the peers. The cost of maintaining P2P amounts to the cost of
maintaining the client, which doesn’t require the developer to
run a server all the time.

P2P also has pitfalls. Data synchronization becomes a
daunting task because the game state has no ground truth to
subscribe to. Security also becomes harder since the attacker
has direct access to the game state (potentially spoofing it
during networked gameplay, for instance). Finally, peer-to-peer
is overall more complicated to implement and is not a default
option when developing networked features in games.

Research has been conducted to try to mitigate these prob-
lems to make peer-to-peer more appealing to the average indie
developer [3]. In the following sections, I will present the
issues of connectivity, scalability, and latency 1 issues in games
and present peer-to-peer solutions for these issues. Towards the
end, I will discuss the feasibility of them in commercial games
and why this is a question of design.

II. P2P SOLUTIONS TO GAMING

In this section, I will describe intuitions behind some
peer-to-peer solutions to the aforementioned problems. Each
section shall begin with a brief explanation of the server-
client solution, followed by a description of some peer-to-peer
solution(s). The solutions are based on research conducted in
the last 2 decades, and are not exhaustive. The solutions are
also not mutually exclusive, and may be combined to form a
more robust solution.

A. Connectivity

Matchmaking in games using the server-client architecture
is a simple task. Because the players (clients) all connect to
a central server, the server has access to a list of players
and can group them based on some matchmaking algorithm
implemented in the server code. The grouped clients then
receive an announcement that the match has been found, thus
beginning their match sessions.

1I left out security because I am not too familiar with the subject at hand
and time was limited. In all honesty, the topic itself is very broad.

Fig. 1: An example ring structure, where node A is the
coordinator and A watches F, which watches E, ..., and B
watches A (from [5])

The problem is more complicated in peer-to-peer architec-
tures. Because there is no central server to aggregate player
data, each match-seeking peer needs to make themselves
known to the other match-seeking peers. Another problem is
where to run our matchmaking algorithm (since this must run
as long as the game is serviced). There is no central server
to run the matchmaking process, yet we need to ensure the
algorithm is running at all times.

Before moving forward, it is important to note that I assume
that there exists a mechanism for establishing the peer-to-peer
network. One common solution is to have a centralized system
that creates these connections as in [2]. Players connect to
a central server, which sends them the address of peers to
connect to. Although this is not a peer-to-peer solution, it
is a practical solution, used by many games today. For the
rest of this paper, we assume that the peer-to-peer network
is established as this is a topic that applies to peer-to-peer
networks in general.

Boroń et al. proposes the Self-Aid network, which organizes
peers into ring structures(each having a pointer to another,
with the last looping back to the first) lead by a coordinator
node that publishes their existence and current peers to a
distributed hash table (DHT). A DHT is a data structure that
maps keys to values (like a hash table), but these key value
pairs may exist across multiple networked machines. In our
case, the key for matchmaking would be the (unique ID of the)
matchmaking algorithm and the value would be the location
of the coordinator node and its rings. Players who seek for
matches would query the DHT, find the location of the ring,
and send a request to the coordinator node. The ring runs the
matchmaking algorithm and sends the peers to connect to back
to the client. The client then directly connects to the returned
peers, starting a match session [5].

Their solution solves both the problem of player request
aggregation and the problem of matchmaking process host.
The ring of a particular service algorithm is unique, thus

all players who request to be matched by a matchmaking
algorithm in a period of time will be directed to the same
ring. The ring is also responsible for running the matchmaking
algorithm, and ensuring that coordinators are replaced in case
of failures [5].

In addition to regulating the network, the coordinator also
manages the load of the ring. The coordinator recruits new
nodes to the ring when the load is high and disconnects nodes
when the load is low. Nodes are connected in a first-in-first-
out fashion to ensure the coordinator is the oldest node. This
uses the intuition that old nodes are less susceptible to failure
and in the event that it does fail, the coordinator is the next
best candidate [5].

For failure management, the system considers three generic
cases: when a normal node fails, when a new node that is
about to be recruited fails, and when the coordinator fails.
When a normal node fails, the coordinator is notified by the
failure’s watching node and the ring is reconstructed with
by connecting the failure’s watching node to the failure’s
watched node. When the new node fails, the ring disconnects
and reverts to the state before the failed recruitment. Finally,
when the coordinator fails, the watching node becomes the
new coordinator and special cases like if the coordinator was
in the midst of recruiting are handled. This robust process
of enforcing the ring’s structural integrity ensures that the
published announcement on the DHT is always accurate and
up to date [5].

B. Scalability

A game and the hardware hosting them must be able to
accommodate for the growth of the playerbase. That is, the
developers must account for the possible costs that arise from
having more players. Costs may come from the computational
overhead from the increased amount of data to process, the
communication overhead from the larger volume of messages
being sent/received, the cost of hardware required to alleviate
the aforementioned overhead, etc. A game is scalable if it
can handle the increased load without incurring a significant
increase in costs.

Server-client architectures support scalability as much as the
server hardware can support it. To explain, as the playerbase
grows, more clients connect to the same server, increasing the
load on the server. To alleviate this, developers may optimize
their server code to handle more clients. This may include
reducing messages sent between servers and clients or optimiz-
ing calculations made in the game loop with acceleration data
structures. But more often than not, developers just buy more
machines and run multiple instances of the server program
[3]. This is called a server cluster, and is the most common
solution to scalability in server-client architectures [12].

On the other hand, peer-to-peer architectures support scala-
bility as much as the peer hardware can support it. In this case,
the number of peers connected to the network increases as the
playerbase grows. However, there is no need to buy servers
for scaling purposes because all computation is done on the
peers. This is a major advantage of peer-to-peer architectures,

as there is no direct increased cost for the developer. One must
note that this just means the responsibility for having adequate
hardware is handed to the players. Players must have hardware
adequate to run the game and the networked features, so the
development costs may increase to make sure the game is
playable on a wide range of hardware [3].

Another architecture worth mentioning that may alleviate
the problem of poor performant player hardware in general is
cloud architecture [14]. In this architecture, clients still connect
to the server, but the game is hosted on a remote game client.
The client’s only purpose is to upload input to the remote game
client, which runs the game loop and communicates with the
server. The state is then streamed and rendered on the client’s
screen. This architecture does come with the same bottleneck
and scalability problems as server-client architectures, but the
problem of hardware is passed onto the cloud service provider.
This is a viable solution for indie developers who cannot afford
to run server clusters, but can afford cloud services.

Coming back to peer-to-peer architectures, the problem
of scalability comes in different forms. As seen previously
with Self-Aid, the matchmaking algorithm is executed by a
ring of peers. The load(number of clients requesting match-
making concurrently) is balanced by the coordinator, who
recruits/disconnects nodes as the load increases/decreases[5].
In this case, the peers share hardware resources to resolve
the computational overhead. Another form of overhead is
communication overhead. This form is best illustrated within
the realm of Massively Multiplayer Online Games (MMOGs).

MMOGs are games that have an astronomical playerbase.
These games usually involve the players navigating a net-
worked virtual environment (NVE) and interacting with other
players. NVEs are virtual worlds that contain and keep track of
all player and object (NPCs, items, etc.) activities, and as the
name implies, is hosted on multiple machines due to its size
and huge number of events to process[9]. Networked virtual
environments highlight the scalability problems fairly well, but
we will focus on the communication overhead problem here
mostly.

On server-client architectures, server clusters may handle
load balancing events in different schemes. Some may repli-
cate the world on multiple servers, some may split the objects
evenly among servers, and some may allocate servers to each
host a different part of the world. The last is among the most
relevant approach to peer-to-peer architectures, since it is not
feasible for all peers to keep track of the entire game world
[9]. With zoning, each peer/server manages all the objects
and players within its zone, and communicates with other
peers/servers when objects/players move between zones. The
latter is where the communication overhead problem comes
in. When picking a partitioning scheme, we should try finding
one that minimizes the number of peers each peer must talk
to, so that the number of messages sent/received across the
network is minimized [19].

Various partitioning schemes exist to divide the world
among peers. To mention some tessellations, we may divide
the space with square grids [11], hexagonal grids [9], and even

Fig. 2: A Voronoi diagram, every point in each region is closest
to the region’s site indicated with a white dot

triangular grids [8]. We may also have dynamic/static parti-
tions, whether boundaries are changed at every time step. Hu et
al. proposes a Voronoi partitioning scheme, which divides the
world into regions centered around players(sites). Every point
in a region if and only if it is closest to the region’s site and
the boundaries are adjusted if the site’s position changes [10].
This scheme limits the number of connected peers to those
within the peer’s area of interest, decreasing communication
overhead. In other words, the Voronoi partitioning scheme
allows for dynamic interest management, unlike static meshes
which require all peers to keep track of the same number of
regions.

With any partitioning, each peer is only concerned with
events that occur within its area of interest(AOI). We may
define the visibility polygon of a peer to contain all peers that
are concerned with events that happen in the peer’s region
and are sent updates when needed. At every time step, the
boundaries are modified to match the current positions of the
sites. Then the peers connect with peers that have entered their
AOI and disconnect from those that have exited. Finally, the
peers pass responsibility for an object if the object is no longer
in their region [6].

Although Voronoi partitioning alleviates the scalability
problem, but there are some pitfalls when crowding occurs.
In crowding, assuming the AOI is constant and same for each
peer, the Voronoi regions become smaller, and since more
regions are within a peer’s AOI, each peer keeps track of
more peers, increasing communication overhead. There are
two methods mentioned that may alleviate this load. One is
to aggregate neighboring regions into a single region and
designate that peer as a super-peer. The peers within this
aggregate region connect to the super-peer for relevant updates
in their AOI [9]. However, this assumes that the super-peer has
the adequate hardware resources for processing more regions
(the super-peer acts like a server connecting all the client-
peers). Another method is to have peers dynamically adjust
their AOI. In this method, when the number of peers in a
peer’s AOI exceeds a threshold, the AOI shrinks to limit the
number of connected peers, limiting the amount of messages
that can be transmitted/received [10]. One caveat is that when

disconnecting from peers (due to shrinking), a peer must
ensure that the potential disconnectee’s AOI does not cover
the region, even if the disconnectee is not in the peer’s AOI.
This is to ensure there exists mutual awareness and that objects
are not lost in the networked virtual environment [10].

All this time we have neglected the problem of data manage-
ment with respect to objects. In the previous sections, we’ve
assumed that the objects within a region are managed by the
region’s peer. Because region boundaries are determined by
peer locations, object managers change as peers move[6].

Though logically sound, it is not the best solution. For
instance, if boundaries are changing rapidly due to rapid player
movement, then object managers are being changed frequently.
The problem is magnified if an area is dense with objects.
Because switching object managers implies that memory is
being deallocated on the previous peer and allocated on the
new owning peer, frequent object manager switching leads to
frequent memory operations, which is a major bottleneck in
the game loop.

Buyukkaya et al. introduces Vorogame, a hybrid P2P ar-
chitecture that aims to fix this problem. They separate the
object management with the boundary management by having
2 overlays, a structured overlay (the Voronoi representation)
and an unstructured overlay (a distributed hash table). Every
object thus have 2 responsible peers, a Voronoi responsible
peer (VRP) that watches the object for changes and, a DHT
responsible peer (DRP) that holds the object’s data. When
changes occur to an object, the VRP sends a message to the
DRP to update the object’s data. The VRP also sends the DRP
a list of peers who are interested in the object, prompting
the DRP to disseminate changes to these peers. When a VRP
changes due to boundary changes, a message is sent to the
DRP to update the VRP of the object [7]. As one can see, an
object’s DRP is not necessarily the owner of the region the
object is in, thus eliminating the problem of frequent memory
operations.

C. Latency

Latency (colloquially known as lag) is a key problem in
games. It directly relates to the quality of experience of
the player. If the game is not responsive (laggy), players
experience visual artifacts and delayed feedback, which is
disruptive and frustrating for the experience. This is especially
true in competitive games, where the player’s reaction time is
crucial to winning the game. In this section, we will discuss
the problem of latency in peer-to-peer architectures and how
it is mitigated.

In server-client architectures, latency is mostly dependent
on the quality of the connection between the server and the
client and the server’s computational power. Thus, to improve
connections between players and servers, developers may buy
servers located across different geographical regions. This
increases the probability that the servers are closer to the
players, thus reducing the time it takes for messages to travel
between the server and the client [2].

Fig. 3: This car starts at t0, with predictions at t
′

1 and t
′

2 and
real positions at t1 and t2 (from [17])

But in peer-to-peer architectures, the problem of latency is
more complicated. The latency is dependent on the quality of
the connection between the peers and the computational power
of the peers. These parameters are out of the control of the
developer, thus making the developer focus more on making
sure their game can run well across a wide range of hardware
and latencies (a similar problem to that in scalability).

Agarwal et al. proposes Htrae, a system that predicts the
latencies between peers using geolocation data and matches
them in the most (predicted) optimal fashion for matchmaking.
Htrae also tunes the predicted latencies will real-time data in
case the geolocation data was inaccurate. This scheme helps
provide a guess of the most optimal network and update itself
along the way. One should note that the system uses a central
server to hold the data and route the network however [2].

We may also create super-peers to mitigate latency issues.
A super-peer may not only arise because it has adequate
computational resources, but also if connecting to the super-
peer minimizes latency when compared to a direct connec-
tion [3]. However, we should still keep the redundant direct
connections. If the super-peer fails, existing connections can
help reduce the overhead of calculating a new super-peer.
Additionally, comparing game states with multiple peers could
determine whether the super-peer’s state has been spoofed or
not [3].

But despite this, a lot of times network latencies cannot be
changed. A player may be stuck with poor internet service or
a poor machine. It would be unfair to force players to upgrade
their hardware or internet service too just have an enjoyable
gameplay experience. Additionally, it may not be ideal to
constantly share updates with peers, as this may consume
bandwidth other apps may use.

Thus, developers have devised strategies to provide smooth
gameplay by hiding latency issues. Termed as dead reckoning,
the game predicts the current state of the game based on the
most recently received state. In other words, an opponent’s
position on a player’s client is estimated based on the most
recent known velocity. When the opponent’s true position is
received, the client corrects the estimated position by blending
the path the opponent takes (without blending, opponents snap
to the true position, which looks jarring to the player) [17].

With dead reckoning, we reduce communication overhead,
while having smooth gameplay. By enforcing a delay, we
ensure only a few of messages are sent between peers in a
period of time (time threshold). The extrapolation of positions
becomes the primary method of updating the local game state,
with the true positions being sent to correct these positions
periodically. In fact, we may use a space threshold to neglect
updates when predicted positions are close enough to the true
positions [11].

Care must be taken when deciding the time and space
thresholds for message latencies and update frequencies re-
spectively. First, if thresholds are too long, the predicted
positions may be too far from the true positions. When
smoothing these positions on the local game state, the motion
may abruptly accelerate to the desired position, breaking
the smoothness goal. But if they are too short, we send
unnecessary updates to peers, defeating the purpose of dead
reckoning [11].

Regarding space thresholds, Jaya et al. combines the interest
management concept mentioned above with dead reckoning.
Like before, the space is partitioned into subregions and each
peer is only concerned with updates from peers within their
AOI and responsible for disseminating changes within their
own region to surrounding peers. However, opponents that
are closer or within the peer’s own region are updated more
frequently than those further away. This uses the intuition that
players are more visually concerned with nearby opponents
than those afar, meaning we can forego accuracy for moving
objects that are far away [11]. This scheme allows for better
bandwidth usage by reducing the messages we send to those
that are critical.

In addition, in games with interactable objects, our local
game state must also determine what to do when opponents
supposedly collide with objects. Because our local state game
state is an estimation, triggering a collision via the game
engine may lead to inaccurate results if the opponent didn’t
collide with the object in the true game state. Thus, there must
be a mechanism of ensuring how to handle dead reckoning
when collisions are involved.

Walker et al. resolves these issues with their predictive
dead reckoning system, which uses neural nets to predict the
opponent positions and collisions. They describe the prediction
as ”approximating the game engine”, which can be easily
trained giving a numerous amount of training scenarios. They
divide their algorithm into 3 cases, one for when opponents
are close, one for when opponents are far, and one for when
opponents are (or are anticipating) a collision. Each case is
handled by a neural network that has varying inputs/outputs
to tailor the accuracy for that case. For instance, the far case
uses the most recent state, whereas the close case uses the three
most recent cases in temporal order. To handle collisions, the
system uses a neural network to predict the collision response
rather than letting the physics engine handle it. This allows for
smoother blending towards the actual aftermath with a specific
obstacle. After all these are handled, the path is blended
using linear interpolation which takes into account the car’s

Fig. 4: The solution uses 3 neural networks, one for each
case. A collision network is used for collision responses and
an LTSM or FC network is used for position predictions
depending on proximity (from [17])

dynamics [17].

III. COMMERCIAL GAMES AND REMARKS

After reading through many articles published by game jour-
nalists, I can conclude that the research I have just discussed
and industry practices both verify and contradict each other.
Specifically, it turns out that peer-to-peer architectures are
widely used for peer-to-peer architectures for 2 player games
and fighting games and server-client architectures used for
games that involve many players at a time. This goes against
the claims made in the scalability section, but verifies the
points made in the latency section. But the reasoning behind
these practices are sound.

First off, I found most games still opt for server-based
matchmaking [14]. However, the connections between players
could still be peer-to-peer. For instance, some popular games
published by Nintendo such as Splatoon and Mario Kart 8
Deluxe use NEX, a library that provides a game server and
API for matchmaking players into peer-to-peer sessions [15].
This is a good example of a hybrid architecture, where the
server is used for matchmaking and the game is serviced with
peer-to-peer. As seen before, with centralized matchmaking,
we can utilize extra data such as geolocation data to predict
the best connections between players [2].

Next, peer-to-peer architectures work best for 2 player
games, especially fighting games. 2 player peer-to-peer con-
nections are just direct connections, so the latency is min-
imized assuming a good connection. Additionally, synchro-
nization is not a big issue because there are only 2 parties
involved (unlike many in MMOGs). Finally, it is harder to
cheat because both clients are running the same game state
logic, and the only necessary data each is sending each other
is input (one may argue that the inputs may be spoofed, but in
fighting games, where precision and combos are key, I don’t
think that will help anyone) [13].

Finally, most commercial MMOGs are server-client and the
existence/development of peer-to-peer MMOGs are limited
to research. In practice, it is simpler to scale by buying
machines, even though the price is steep. As seen above,
with peer-to-peer MMOGs, although there is no need to buy
machines, development costs increase because the problem
and algorithms become more and more complex as the number

of peers increase. Perhaps the biggest reason peer-to-peer
MMOs are not mainstream is due to security. Especially in
MMOGs with microtransactions, the virtual economy is at risk
if the game state is not protected. In server-client architectures,
security is guaranteed because the server holds the ground
truth of the world. But in peer-to-peer, attackers are given
access to the client, which also holds a part of the game state,
making it easier for cheaters to gain unfair advantages [16]. To
end, it is more profitable for the game developer (given enough
money) to buy servers and maintain a secure environment for
their game than to develop a secure peer-to-peer MMOG.

IV. CONCLUSION

In this paper, I have discussed the problems of connectiv-
ity, scalability, and latency in games and how peer-to-peer
architectures may solve these problems. I have also discussed
the feasibility of these solutions in commercial games and
why some are not mainstream. I concluded that peer-to-peer
architectures are a viable solution for games with 2 players, but
are not practical for games with too many players. The main
reason for this is due to the complexity of the algorithms and
the security risks that come with peer-to-peer architectures. If
given more time, I would’ve researched into synchronization
and security algorithms, as well as other alternative architec-
tures for peer-to-peer games. I hope that in the near future, we
start seeing more studios implement peer-to-peer architectures
in their games, so we can verify whether the assumptions
made in research are true, and continue directing our focus
towards enriching the online multiplayer gaming experience
for all players.

REFERENCES

[1] Video game market size, share and growth report, 2030.
[2] Sharad Agarwal and Jacob R Lorch. Matchmaking for online games

and other latency-sensitive p2p systems. In Proceedings of the ACM
SIGCOMM 2009 conference on Data communication, pages 315–326,
2009.

[3] Yousef Amar, Gareth Tyson, Gianni Antichi, and Lucio Marcenaro.
Towards cheap scalable browser multiplayer. In 2019 IEEE Conference
on Games (CoG), pages 1–4. IEEE, 2019.

[4] Krishan Arora. Council post: The gaming industry: A behemoth with
unprecedented global reach, Nov 2023.

[5] Michał Boroń, Jerzy Brzeziński, and Anna Kobusińska. P2p matchmak-
ing solution for online games. Peer-to-peer networking and applications,
13:137–150, 2020.

[6] Eliya Buyukkaya and Maha Abdallah. Data management in voronoi-
based p2p gaming. In 2008 5th IEEE Consumer Communications and
Networking Conference, pages 1050–1053. IEEE, 2008.

[7] Eliya Buyukkaya, Maha Abdallah, and Romain Cavagna. Vorogame: a
hybrid p2p architecture for massively multiplayer games. In 2009 6th
IEEE Consumer Communications and Networking Conference, pages
1–5. Ieee, 2009.

[8] Raluca Diaconu and Joaquı́n Keller. Kiwano: Scaling virtual worlds.
In 2016 Winter Simulation Conference (WSC), pages 1836–1847. IEEE,
2016.

[9] Shun-Yun Hu, Shao-Chen Chang, and Jehn-Ruey Jiang. Voronoi state
management for peer-to-peer massively multiplayer online games. In
2008 5th IEEE Consumer Communications and Networking Conference,
pages 1134–1138. IEEE, 2008.

[10] Shun-Yun Hu, Jui-Fa Chen, and Tsu-Han Chen. Von: a scalable peer-
to-peer network for virtual environments. IEEE Network, 20(4):22–31,
2006.

[11] Iryanto Jaya, Elvis S Liu, and Youfu Chen. Combining interest
management and dead reckoning: a hybrid approach for efficient data
distribution in multiplayer online games. In 2016 IEEE/ACM 20th
International Symposium on Distributed Simulation and Real Time
Applications (DS-RT), pages 92–99. IEEE, 2016.

[12] Bjorn Knutsson, Honghui Lu, Wei Xu, and Bryan Hopkins. Peer-to-peer
support for massively multiplayer games. In IEEE INFOCOM 2004,
volume 1. IEEE, 2004.

[13] Mauve. “understanding fighting game networking”, Oct 2021.
[14] Florian Metzger, Stefan Geißler, Alexej Grigorjew, Frank Loh, Christian

Moldovan, Michael Seufert, and Tobias Hoßfeld. An introduction to on-
line video game qos and qoe influencing factors. IEEE Communications
Surveys & Tutorials, 24(3):1894–1925, 2022.

[15] Author OatmealDome. Splatoon 2’s netcode and matchmaking: An in-
depth look, Aug 2022.

[16] Gregor Schiele, Richard Suselbeck, Arno Wacker, Jorg Hahner, Christian
Becker, and Torben Weis. Requirements of peer-to-peer-based massively
multiplayer online gaming. In Seventh IEEE International Symposium
on Cluster Computing and the Grid (CCGrid’07), pages 773–782. IEEE,
2007.

[17] Tristan Walker, Barry Gilhuly, Armin Sadeghi, Matt Delbosc, and
Stephen L Smith. Predictive dead reckoning for online peer-to-peer
games. IEEE Transactions on Games, 2023.

[18] Feijie Wu, Ho Yin Yuen, Henry Chan, Victor CM Leung, and Wei Cai.
Facilitating serverless match-based online games with novel blockchain
technologies. ACM Transactions on Internet Technology, 23(1):1–26,
2023.

[19] Amir Yahyavi and Bettina Kemme. Peer-to-peer architectures for
massively multiplayer online games: A survey. ACM Computing Surveys
(CSUR), 46(1):1–51, 2013.

