
Hand Recognition: Real-Time Cropper, Filter, and
Gesture Identifier

William Santosa∗, Arrian Chi†, Allen Liang‡
Computer Science Department

University of California, Los Angeles
Email: ∗wsantosa@g.ucla.edu, †alienchi@g.ucla.edu, ‡aliang20@g.ucla.edu

Abstract—A program that crops hands in real-time by adding
a green screen layer around the hand is presented. Some of the
techniques utilized are Convex Hull Algorithm, Snakes (active
contours), Bit Manipulation, and Hand Landmark Detection. Ex-
perimental results show the process of optimizing this application.
We conclude by suggesting future improvements to our tool and
use cases.

Index Terms—Active Contour, Bit Manipulation, Chromakey,
Convex Hull, Cropping, Graphical User Interface, Hand Land-
mark Detection

CONTENTS

I Introduction 1

II Implementation 1
II-A Directory Structure 1
II-B High Level Logic 2
II-C Libraries 2

III Optimization 3
III-A Issues 3
III-B Active Contour (Snakes) Parameters . . 3
III-C Image Resolution 3

IV Convex Hull 3

V Paint 4

VI Results 5

VII Conclusion And Future Work 5

References 5

I. INTRODUCTION

Green screens, also known as chroma keys, were introduced
in the 1940s and popularized in the 1980s when computer
graphics became more affordable. Blue screens were initially
used but were later swapped to green as it is less likely to be
present on subjects and easier to key out in post-production.
These screens can be used to superimpose videos, create
virtual backgrounds, and much more. Our goal is to make
a program that draws this green screen in real-time without
the need of using a physical screen.

Our application is proposed to solve two main problems in
real-time:

1) Cropping hands quickly and efficiently without the use
of any other external tool.

2) Cropping hands without having to own a green screen.
For example, people could take a video in a crowded
library, and the application would crop their hands
despite the background containing many different rows
of books, tables, and miscellaneous objects.

Additionally, the application provides an intuitive graphical
user interface that contains options for controlling the tool.
For example, there are options to control the FPS, the save
directory for the output images or videos, the image dimen-
sions coming in and out of the program, as well as the display
options like showing landmarks or the active contour itself.

We found a lot of inspiration for this project from childhood
shows like Oob and The Addam’s Family and the video game
character Master Hand, and as such, our application will crop
out the arm to lean toward having more of a “disembodied
hand” aesthetic.

Fig. 1. Cropped Hand.

II. IMPLEMENTATION

A. Directory Structure

We aimed to modularize our code to improve code readabil-
ity and allow work on portions of the code without worrying
too much about merge issues. The breakdown for each file is
as follows:

Fig. 2. Master Hand.

1) main.py: Contains the code for initializing the GUI
and contains definitions for each customizable option,
ultimately passing them into the launch camera function
when the launch button is pressed.

2) hand.py: Where the code for processing the hand and
launching the camera is located.

3) convex hull.py: Where the convex hull algorithm is
implemented, with some miscellaneous portions in the
misc.py file.

4) paint.py: Where our functions for manipulating the
image is located.

5) iocustom.py: Custom input and output file for saving
and loading images.

6) misc.py: Contains a variety of miscellaneous functions
for reusable logic throughout the program.

B. High Level Logic

To accomplish this task, the following steps are taken.

1) Run main.py to launch the GUI.
2) Enter options like FPS, process and end image dimen-

sions, grayscale, initial contours, and press the launch
button.

3) The app opens and reads input from the camera.
4) Camera image (frame) is resized and converted to both

grayscale and BGR. Both are then set back to RGB and
set to writable.

5) Hand landmarks are obtained and a convex hull is
created for the initial snake.

6) The image is manipulated with the options provided,
applying the green screen on the part outside of the
snake, and/or displaying the options provided in the
GUI.

7) Display the image in our application and save the image
if the box is checked.

Fig. 3. Graphical User Interface.

C. Libraries

We used a variety of libraries within the project. Firstly, we
used PyQt6, a set of cross-platform C++ libraries with support
for GUI development, as it’s supported on many different
operating systems and has a variety of modules in case we
want to increase the scope of our project.

We also used Google’s MediaPipe and scikit-image. Medi-
aPipe is a library of artificial intelligence and machine learn-
ing solutions, and we specifically used their hand landmark
detection model. Scikit-image is a similar library and is used
for image processing and computer vision. The active contour
model we used comes from scikit-image.

Fig. 4. Google’s MediaPipe Body Landmark Detection Model.

We also used the Open Source Computer Vision Library,
specifically cv2, which has real-time optimized computer
vision tools and hardware.

We also used Numpy and Matplotlib. Numpy is an open-
source Python library with efficient numerical operations while
Matplotlib is a static visualization library. We use NumPy for
computations and Matplotlib for plotting and displaying data
like landmarks and contours.

III. OPTIMIZATION

A. Issues

Initially, processing the image took a very long time. We
could not even get 1 frame per second. This caused a delay in
the processing of images as the camera captures images at a
rate of at least 1 frame per second, which are stored and then
sequentially processed by our application, making it so that the
processing is not done in real-time. For example, 5 seconds
after the application started, we could be processing an image
from 3 seconds instead of 5 seconds. Also, the active contours
were slow to generate and didn’t accurately wrap around the
hand. The first few implementations of our paint algorithm
also had similar challenges where they were either inaccurate
or too slow.

Fig. 5. One of the First Iterations of Program.

Figure 5 is an example of one of the first “working”
iterations of our program. The dotted red circle is the location
of the initial contour, the circles and lines on the hand are the
landmarks, and the blue bounding polygon, which only shows
up sometimes, is the active contour snake. The center of the
red circle is the center of the landmarks, and the radius of
the circle is set to 200 pixels. This setting does not work very
well when the hand is either too far or too close to the camera.
The program also cannot process multiple hands in an image.
Trying to do so would only identify one hand. Also, the snake
does not work very well, being seemingly unable to identify
the hand properly.

B. Active Contour (Snakes) Parameters

Our first optimization was improving the parameters of the
active contour model. MediaPipe allows us to modify their
active contour model’s alpha, gamma, and beta parameters.
The alpha value controls the elasticity of the model, where
higher values resist changes in length and favor smoothness.
The gamma value controls rigidity and increasing its value
results in a less jagged shape. The beta value controls the
influence of external forces, which is the pull of areas of
interest on the image, with higher values increasing that pull.

Refining the alpha, gamma, and beta parameters was im-
portant to the accuracy of the mode, but the most important
parameter to improving runtime was the number of max
iterations. This parameter determines how many iterations the
spline may take per call. The default was set to 500, and we
reduced it to 50, which we found to be a good balance between
time and accuracy.

C. Image Resolution

Another simple optimization was reducing the resolution of
the image. This made the entire contour generation process
iterate through significantly less pixels. More specifically, we
reduced the resolution from 512 by 512 to 128 by 128, which
is approximately 94% less pixels. We could also scale up the
contour size to fit the original image during post-processing
as the main features of the images were still present, making
this optimization have a negligible effect on the shape of the
contour. However, as we can see on the before and after images
on the screen, there is about a 3 to 4 times speedup after
applying this, as the average runtime when running with 10
iterations before and after is 0.25 versus 0.06 on our machine.

IV. CONVEX HULL

Initially, we provided the active contour model an initial
snake which used a circle centered on the mean of the
landmarks. This gave subpar results because the circle would
match to surrounding areas (expand) or overstep (shrink too
much). We hypothesize that this occurs because the distance
between each landmark and the closest point on the initial
snake varied too much. To fix this, we generated an enlarged
convex hull of the landmarks to match to the hand. This
approximates the shape of the final contour using the minimum
bounding volume of the group of points.

Fig. 6. Circle around mean of landmarks.

To accomplish this in the code, we implemented the
monotone-chain algorithm. Essentially the algorithm builds the
lower and upper hulls individually by iterating and appending

Fig. 7. (Enlarged) convex hull of landmarks.

the leftmost coordinate points (rightmost for upper) and en-
suring the last 3 points added create a counterclockwise turn.
If not, points are popped until the condition is satisfied.

We found that the contour model fits better when more
points are added to the initial snake. This implied the need to
interpolate values between each of the segments of the hull.
This final step will then yield our better-performing initial
snake.

Fig. 8. Find path that corrals landmarks together.

Fig. 9. Interpolate each segment based on length.

V. PAINT

When figuring out how to implement our flood fill function,
we initially broke it down into three steps.

1) Take the camera input and process it.
2) Draw the snake on the hand and save the image to

memory.
3) ”Paint bucket”, like on photo editing programs, on the

portion of the image outside of the contour.
Unfortunately, implementing our flood fill function using this
approach was not efficient (as we would later realize) and
resulted in many problems.

Initially, we used cv2’s floodfill function. However, we
found that that it inaccurately colored pixels on our images due
to the bounding color of the fill being based off the original
pixel color, making it stop at boundaries. Since images can
have many areas of different colors aside from the contour, the
flood fill would stop before everything outside of the contour
was filled in. Additionally, it is unfeasible to use the fill
function multiple times on each section of the image outside
of the contour as we would need to identify each section and
call the fill function on each part. Even then, we would not be
guaranteed to have a fully green background, as this method
does not deterministically fill in pixels.

Fig. 10. Flood fill from pixel until same color.

We decided to create a custom flood fill function that
colored the outside of a bounding polygon until it reached
pixels with the same color as the fill color. As seen in the
code in Figure 10, the image, initial position, and fill color are
passed into the function. A queue of coordinates is created,
and while the queue is populated, we decide to pop the first
element in the list. If the pixel is not out of bounds and not
the target color, it is changed to that color, and its neighbors
are added to the queue. Otherwise, it would ignore that point
and continue to the next element in the queue.

This method’s accuracy was good but the runtime was
too long due to having to check pixels one at a time. We
implemented an optimization by taking bounding boxes of 4,

then 9, pixels in 2 by 2 and 3 by 3 fashion, and randomly
checked approximately half of the pixels within that bounding
box for the color, and then filled it all in if it matched. This
improved the runtime but it was still extremely slow, taking
about 1 second to fully fill in a 128 by 128 pixel image.

Fig. 11. Color Outside Contour.

However, a much more efficient solution existed. This
solution only occured to us the week before our presentation.
The process goes as follows:

1) Pass in the image and contour into the function.
2) Dilate the image to increase the area of contour.
3) Create a mask by initializing a fully black image with

the same size as the dilated image.
4) Contour is drawn and filled onto the mask as white

pixels.
5) Another mask is initialized but is fully green.
6) The bitwise AND of the image and the mask is taken,

resulting in the original image with black pixels outside
of the contour.

7) The bitwise AND of the color mask and the negation
of the mask is then taken. Negating the mask turns the
filled-in contour to fill everything outside of the contour.
The AND of that and the color mask replaces all the
white pixels with blue.

8) Add to the previous result to layer the colored portion
on top, resulting in the green-screened image.

9) Image is returned.
The processing time on a 128 by 128 image with our new

function improved drastically compared to cv2’s flood fill
function. It originally took a tenth of a second to paint the
image. Now it takes 3% of that time to perform the paint
operation. Not only that, but the accuracy of the contour im-
proved significantly as well. There is no longer any ambiguity
on what should be filled in, as the bounding area is the contour
itself.

VI. RESULTS

With all our optimizations, we achieved a large speedup,
running at about 5 hundredths to 6 hundredths of a second

per frame, permitting our app to be used in real time! It’s
important to note that the snake and paint times are especially
small now, having a similar time to the other steps of our
algorithm. The program’s runtime is bounded by the process
that plots the landmarks, contours, and other options on the
image, accounting for about half of the total time it takes to
fully process an image from start to finish.

TABLE I
APPLICATION METRICS

Metric Average Time (seconds)
Total 0.055

Convert 0.02
Landmark 4.1e-0.5

Snake 0.01
Plot 0.024

VII. CONCLUSION AND FUTURE WORK

Some possible improvements we can add in the future.
1) Gesture recognition. This can be incorporated into our

program by adding events when doing certain gestures,
such as changing the background color, options, and
filters.

2) Video filters like on SnapChat and Instagram to breathe
life into the image.

3) Option to add another shading layer to look like there is
natural light in the image when adding a green screen.

4) Implement further optimizations. We currently can sup-
port between 15 to 20 frames per second on our applica-
tion on our devices, and improving the FPS using better
algorithms would result in smoother videos.

5) Improve parameters to make the snake better wrap
around the hand. This could potentially be implemented
by utilizing reinforcement learning. We make alpha,
gamma, beta, and number of iterations our hyperparam-
eters and the input by the image and landmarks. We
run our program with different parameters and our loss
criteria will be based on:

a) How many of the landmarks are still visible after
post-processing, and

b) the program runtime.

REFERENCES

[1] J. Smith and A. Jones, ”An Introduction to Convolutional Neural
Networks,” arXiv preprint arXiv:1511.08458, 2015.

[2] C. Brown and D. Davis, ”On-device Real-time Hand Gesture Recogni-
tion,” arXiv preprint arXiv:2111.00038, 2021.

[3] E. Johnson and F. White, ”An Active Contour Model with Local
Variance Force Term and Its Efficient Minimization Solver for Multi-
phase Image Segmentation,” arXiv preprint arXiv:2203.09036, 2022.

[4] Active contour model. (n.d.). In Wikipedia. Retrieved May 9, 2024, from
https://en.wikipedia.org/wiki/Active contour model

https://en.wikipedia.org/wiki/Active_contour_model

	Introduction
	Implementation
	Directory Structure
	High Level Logic
	Libraries

	Optimization
	Issues
	Active Contour (Snakes) Parameters
	Image Resolution

	Convex Hull
	Paint
	Results
	Conclusion And Future Work
	References

