
A Space Island Scene
Arrian Chi William Santosa Ethan Truong Desmond Andersen

Abstract—In this simulation, we modeled an island in the
middle of space. We started with a simple particle system adapted
from the assignments, implemented the Leonard-Jones model to
simulate fluid motion, added tentacles to make the environment
space-like, and includes a shark. To polish the scene, we smoothed
motions with splines and added Japanese decor. In this report,
we will describe our process of transforming our simple scene
into an oriental space island.

I. INSPIRATION

In our initial proposal, we started by brainstorming our
implementation process. We wanted to parallelize development
while also creating a cohesive scene. To prevent the need to
wait for someone else to finish development, we decided to
split the project into graphical components by their algorithms.
For example, one member can work on the particle system
while another works on the tentacles. This way, we could work
on the project simultaneously and merge our work together at
the end.

With this in mind, we proposed the idea to make a peaceful,
Japanese garden scene as it is calming and visually appealing.
However, our idea grew into an island as we started to
repurpose our particle system to simulate components other
than water. Our idea then shifted into a space scene with
Japanese elements after learning about inverse kinematics and
creating tentacles. Nonetheless, our original goal of making
the scene satisfying and peaceful to watch still holds.

In the following sections, we will describe the components
implemented, difficulties faced, and end result of the imple-
mentation.

II. WATERFALL (AND VOLCANO)

A. Fluid Simulation

Fig. 1. Scene

We built off the particle system from the assignment to
implement our fluid simulation. In addition to gravity and
borders, we added a loop that iterates through all particles

and applies a force to each particle based on the Leonard-
Jones model. That is, each particle exerts and attractive force
and repulsive force on each other particle dependent on the
displacement of that particle.

With a few particles (around 100), this implementation
works. However, with a large number of particles, the sim-
ulation becomes very slow. This was reasonable because the
time complexity of the entire operation is O(n2̂) (for every
particle we are looping for every particle). This subsequently
creates a high CPU load and a low frame rate. Below we list
some methods of fixing this:

1) Acceleration Data Structure: We may opt to implement
an acceleration data structure like an octree, spatial hash
grid, or kdtree. The intuition behind these data structures
is simple. If we have a particle P and Q in space and Q
was located far away from Q, the force exerted by each
to each other is trivial to none. Thus, we can partition
the space such that for each particle, we only check the
particles that contribute significantly to the fluid force.
The data structures mentioned do this by keeping track
of the partitions particles are located in. A query for the
particles within a range then involves a query for the
partitions within that range, obtaining the particles we
need.

2) Mathematical Intuition: We may move/expand terms
around to make the model more efficient to calculate.
Above, we see that the masses of particles are involved
in the calculation. But if the particles all have a mass of
1 unit, then we don’t need to multiply by the mass. We
can also expand the unit displacement in the formula
and use the original displacement in our calculations.
This way, we can avoid one square root operation and
one division, which are both expensive operations. Yet
another optimization is to avoid calling the divide by
function on the vector and instead multiply by the
inverse of the factor. We avoid doing 2 divisions this
way (we do one divide to find the factor instead of three,
one for each component of the vector). Finally, in our
range calculation, we can avoid a square root operation
by comparing the square of the distance to the square
of the range. If the square of the distance is less than
the square of the range, then the distance is less than
the range.

3) Code Optimization: We may improve the code itself.
The Vector class within tiny_graphics.js relies
on functions as an analogy for vector operations. Many
of these functions call computationally ’slow’ methods
such as Array.prototype.map(). By inlining the majority



of these functions in performance-critical sections of
code, we found signficant reduction in call overhead.
Additionally, we cached Vector (Float32Array) ele-
ments into local variables and object members which
provided a slight performance increase in some sce-
narios. We also unrolled the simulation loop to utilize
instruction level parallelism and reduce branch mispre-
dictions (on a low level). We also believe that loop
unrolling allows for better register utilization.

4) Hard Limit: The simplest way to reduce the computation
is to reduce the number of particles we check statically.
So for each particle, we may only check 8 particles,
scaling the forces as appropriate. This works because
the final force can be throught of as an aggregate of
aggregates of forces exerted by particles. A particle that
exerts a force onto another will definitely have other
particles that exert a similar force to this particle. Thus,
magnifying this force by some factor saves us some
iterations (at the cost of some accuracy).

5) Symmetric Force: The Leonard-Jones model is symmet-
ric. That is, the force exerted by particle P on Q is the
same as the force exerted by Q on P . Thus, we can
loop through the particles and apply the force to both
particles considered at each iteration. This way, we only
need iterate on half the particles.

6) Parallelization: One may also attempt to parallelize the
entire particle systems update loop (with multithreading,
compute shaders, etc.). This requires 2 synchronization
points (barriers), one at the end of the force calculation,
and one at the end of the particle position update. This
is because the position at the next time step is dependent
on the force, which is dependent on the positions of the
current time step. If one thread runs faster than another,
the timings will be unsynchronized, leading to the slower
thread using a future position of a particle to calculate
the force, which is incorrect.

In our implementation, we decided that to focus on the
animation algorithms, we should implement the optimizations
that take the least amount of time, thus opting for the second,
third, and fourth optimization algorithms listed above. We
attempted to implement the sixth with Javascript webworkers,
but the process was too complicated and tedious to implement
(JavaScript, unlike C++, does not have a barrier data structure
either). Additionally, we also experimented with the theory
that the multiple draw calls made is what causes the slow
down, but we found that when attempting to combine the
particles into one piece of geometry, the simulation becomes
even slower (this may be due to the fact that we used the
insert_transformed_copy into function after clearing
out the vertex arrays, making the crux of the workload the
initialization of the arrays).

B. Enhanced Particle System

In many game engines, particle systems have controllable
parameters that help designers achieve the effects that they
want. These may include but are not limited to: particle spawn

rate, life time, number of particles, spawn location, spawn
radius, exit velocity, particle radius, and so on. These param-
eters are in addition to the fluid parameters and the gravity
parameters required for simulation. We implemented these
features after realizing that our waterfall could be repurposed
into other systems, such as volcanoes and snow. Some critical
components of this system includes:

• Spawn rate: At every timestep, the particle system cal-
culates how many particles to spawn. If all particles
spawned at the same time, the particle motion will look
too uniform and the stream-like effect is lost. Thus, we
spawn particles in chunks per unit time. This is calculated
using a gauge mechanism. Assuming that the spawn rate
is given per hundredth of a second, the gauge increases by
the rate multiplied by the interval. If the gauge is greater
than 1, we spawn a particle and decrement the gauge by
1. With this method, we can support spawn rates that
are over and under the time step divisions (100 in this
case). That is, we can have some timesteps not spawn
any particles at all due to slow rates.

• Respawn logic: To implement respawning, we added a
lifetime variable to each particle and a check to see if the
particle has lived past its lifetime. If it has, rather than
deleting it, we zero the lifetime and reset the position
and velocity to the source position and exit velocities
respectively. That way, we can reuse the same particles
over and over again, saving memory and time.

It took a lot of trial and error to get the values we wanted.
In the following sections, we outline the methodology of
selecting parameters for each component of our simulation.

1) Waterfall: For the waterfall, we know there is a hor-
izontal exit velocity (water trajectory), high attractive force
(relative to repulsion), and small spawn radius. Our spawn
rate, number of particles, and particle lifespan are set so
that the particles can reach the ground, clump together, and
despawn shortly. Gravity is also set to reduce the bounce of
the particles and repulsion/minimum separation are set so that
some particles shoot out randomly (like in stray droplets in
real waterfalls). In the end, these parameters create the effect
of water gushing out of a cliff and downpouring to the lake
below.

2) Volcano: The volcano was actually discovered by ac-
cident. When the simulation doesn’t have enough particles to
spew out (because the particle lifetimes are long and the spawn
rate is too high), visually it looks as if the particle system
erupted. Combining that with high repulsion, small spawn
radius (to let repulsion do its thing), vertical exit velocity, and
huge particles, we get a volcano eruption effect. Of course,
the volcano loops because of the respawning logic, but this
should suffice for now.

3) Snow: Snow is a simple particle system (usually, pre-
cipitation is implemented in shaders, but it doesn’t matter for
the project). Snow covers a huge area, so we must adjust
the spawn rate and number of particles to adjust the snow
density given the large spawn radius. We set low gravity and



a high repulsion/minimum separation to achieve both the slow
fall and small wind. Finally, the lifetime is tuned so that the
particles despawn once they hit the ground.

III. KRAKEN

A. Tentacles

We built the tentacles off of the inverse kinematics assign-
ment, playing around with a variable number of segments,
each increasing the degrees of freedom. The tentacle joints
are attached to a 3 DOF rotational joint, and our tentacles
have 10 segments, thus 30 DOFS. The end effectors are the
tips of the tentacles, and the root is the base of the tentacle.
Each segment from the root to the tip gets smaller and smaller
to create the shape of the tentacle.

The tentacles are animated with inverse kinematics. That is,
at every time step, the DOFs of the tentacles are calculated
so that the tips move toward the desired position. It involves
calculating the displacement (current and desired end effector
position) delta, the pseudoinverse Jacobian, and the changes
in DOFs (delta thetas). Much of this was outlined in class,
and so we will not go over this here. In calculating the
Jacobian, we used the cross product between the DOF’s axis
of rotation and displacement from the joint to the end effector.
This formula gives us the instantaneous derivative of the
DOF with respect to time. We acknowledge that we compute
the derivative numerically by keeping track of the previous
positions, believing that the formula gives us the most optimal
results.

B. Smoothing

At first, the tentacle animation was very slow, rigid, and
glitchy. Thus, we implemented some smoothing algorithms to
mitigate these issues.

• Circular tentacle motion: Originally, our implementation
had the tentacles move randomly from point to point
within a predefined cartesian space. However, we noticed
that in both movies and real life, tentacles generally
follow a circular fashion. Consequently, we implemented
a circular Hermite spline that the tips (end effectors)
would follow at each time step. The center of each spline
is defined by a point near the tentacles initial position to
prevent jittering due to unreachable areas.

• Catmull-Rom transitions: Even after circular motion was
implemented, the tentacles still moved rigidly. The prob-
lem was that the transition from one circle to the next was
discontinuous (after a certain amount of time, the splines
are redefined, adding more variance to the animation
cycles). To solve this issue, we connected the current
position to the starting point of the next circle with
a Catmull-Rom ”transition” spline. Consequently, the
tentacles move smoothly from one circle to the next. The
Catmull-Rom spline was used to guarantee smoothness
from the previous circle to the transition spline to the
next circle. This makes the motion visibly smooth.

• Timing Curve: The motion now was smooth, but the
tentacles moved at inconsistent speeds across each curve.

So the tentacle would rapidly move for some time, then
suddenly slow down. This is because of 2 reasons. First,
the delta multiplier for the error in the IK simulation,
the epsilon used to determine whether or ot to generate
the next desired position, and the dθ multiplier needed
tuning. Second, the tentacle is not guaranteed to move
the same amount of distance at every time step. Thus, the
desired position should be generated based on a constant
arc length. So at every time step, we move the same
amount of distance along the current spline. To implement
this, we leveraged the arc length table in the spline class,
mapping the parametric entry t to the arc length, and
the bisection method of searching the parametric entry
given the arc length desired. When we need a new desired
position, we find the proportion of the arc length with our
timing variables, multiply that with the overall arc length
of the spline to get the desired arc length, and use the
bisection method to find the parametric entry, which we
use to find the desired position.

• Finishing Touches: To complete the kraken, we applied a
grainy texture over the segments and the joint geometry.
We also reduced the number of vertices on the kraken to
make the rendering more efficient. There was also a slight
pulsation on the tentacles to make them look more alive
and alien-like. Finally, the movement was made faster to
make the kraken look more aggressive.

IV. MISCELLANEOUS

A few features were added to make the scene more cohesive
and visually appealing. Namely:

• Skybox: A night skybox is added to give the scene a
spacey, dark vibe. In fact, this space background is what
inspired the space island idea. To create the skybox, a
night sky texture was taken and then mirrored vertically
to create a seamless transition when repeating it side by
side. The texture was then mapped onto a subdivision
sphere to create the resulting skybox.

• Shark: Mass spring dampers from assignment 1 were used
to create shark in the pond.

• Color Spline: We added a color spline to the particles, so
that the particles change color according to their squared
speed relative to a maximum speed. This is how we made
the waterfall have a little white at the bottom, and why
the volcano has red particles spewing out but brown rocks
on the ground.

• Spline Camera: We created the option for the camera to
follow a spline and look towards the center of the scene.
The camera follows a C2 continuous spline path that goes
around the island and the lake.

• Decor: We added some decor to the scene to give it a
more oriental feel. This includes a torii gate, a bridge,
and some lanterns.

• Water: We added a water plane to the scene to give the
scene a more realistic feel.

• PBR Material Support: We added basic support for
normal maps, ambient occlusion maps, and roughness



maps within an extension of the textured Phong shader
to provide more realism to our materials.

V. CONCLUSION

We have outlined the process of creating our simulation
project, starting from the fluid particle system to the inverse
kinematics tentacles to the construction of the final scene.
Overall, we are happy with our final product and will use
the techniques learned in future projects.


