Last of Sus : a Zombie Apocalypse simulation

William Santosa*, Arrian Chif, Allen Liangi, Brenna Kjorness §
Computer Science Department
University of California, Los Angeles
Email: *wsantosa@g.ucla.edu, Talienchi@g.ucla.edu, *aliang20@g.ucla.edu, $brennakj3@g.ucla.edu

Abstract—For our project, we created a simulation of a
zombie apocalypse. The simulation shows emergent behaviors
from three groups of entities: humans (prey), zombies (predator),
and fungi (symbiotic relationship with predator). We found that
the system starts out chaotic, but gradually descends towards
an equilibrium. In this paper, we explain our idea, details of
implementation, and observed behaviors of the simulation.

Index Terms—Artificial Life, Simulation, L-Systems, Behavior
Trees, Boids

I. INTRODUCTION

OMBIE apocalypses are a common literary trope in

popular media. Usually occurring after a result of human
negligence, the zombies wreak havoc in the city, while the
humans plan and strategize their survival. Other biological
lifeforms emerge as the plot progresses, such as evolved
zombies, abominations, carnivorous plants, etc..

For our project, we took inspiration from the video game
and television franchise The Last of Us. In the simulation,
there are fungal growths that grow on zombies that have a
symbiotic relationship with the zombies, specifically assisting
them in hunting/following humans.

In the following sections, we will explain the role of
each entity, their implementation, and our observations of the
overall simulation.

II. ZOMBIES

Our simulation involves having zombie entities. Zombies
will travel in hordes as much as they can and can detect the
presence of humans. Usually they will wander aimlessly within
their hordes. However, if they detect humans or fungal growths
notify them of where they can find humans, they will chase
after humans to attempt to consume them. If they are able to
eat the human, the human becomes a zombie.

A. Hording behavior

Since the zombies are supposed to travel in hordes, inte-
grating boid behavior was the natural choice to give them this
characteristic. According to this behavior, each zombie will
classify other zombies into three categories. They need to be
able to determine which zombies are part of its horde, the ones
that are not, and the ones that are part of this horde, but too
close to the zombie. For this behavior, each zombie needs to
calculate three trajectories:

o Alignment: The average velocity of the group.

o Cohesion: The average position the group is heading
towards.
o Separation: The direction to travel in to avoid others that
are too close.

Afterwards, a weighted sum of these three values are taken
to generate the final acceleration vector to apply to the zombie.

The process for doing so is as follows. For each zombie,
they first determine which zombies are close enough to be
considered part of the same horde by checking their distance
from each other zombie. At the same time, a second distance
check is run with a smaller distance value to determine the
zombies that are too close. Every horde member’s velocities
and positions are then summed up separately. A separate
summation of distances from zombies that are too close
is also kept. Afterward, if the zombie is part of a horde,
we can then calculate our three vectors. For each of the
three, the process is similar: take the relevant summation,
divide that by the count of neighbors or, in the case of the
separation vector, count of zombies that are too close to get
the average, normalize that result and multiply by a preset
maximum force value (excluding the cohesion vector, where
instead before normalization we want to subtract the current
zombie’s position from the horde’s average position), and then
subtracting the zombie’s current speed from it, clamping the
magnitude to keep it within the bounds of the preset max force.

Now that we have our three vectors, we take a weighted sum
of the three to get the final acceleration vector to apply to the
zombie. After some experimenting, setting the alignment and
cohesion vectors to weigh the same while letting the separation
vector weigh 80% more got the best results: the zombies were
able to stick together in hordes if they happened to be in or
approach one and they also did not collide with each other.

Ve N ™
\
Alerts

Zombie

Fig. 1. Interaction Diagram Between Entities

B. Behavior control

Human and zombie behavior is controlled via a behavior
tree, which is a special type of decision tree with nodes that

can be categorized into either control or execution nodes.
Execution nodes can only be leaves, meaning that they cannot
have any children of their own. They either execute an action
or check for a condition. Meanwhile, control nodes only
occur at non-leaf nodes. They control the logical flow and
determine how to interpret the execution nodes’ return values.
The simplest version of a behavior tree has 4 types of control
nodes and 2 types of execution nodes. However, it is common
to add more node types with probability and other behaviors.

There are two different types of nodes that fall under the
category of execution nodes.

1) Condition Node: Returns either success or failure after
a single tick of the program. Influences the behavior of
the tree and cannot be used to perform an action.

2) Execution Node: Executes an action and returns either
success, failure, or running as its status. The running
status indicates that the action is still being performed
and can span over more than 1 tick. The action and
condition nodes are usually depicted as a rectangle and
as an oval, respectively.

Control nodes influence the flow of the program. They
determine how to traverse the tree and how to interpret the
return values of the execution nodes. There are 4 different
main types of control nodes.

1) Sequence Node: Executes children in order until all
return success or one returns failure.

2) Fallback Node: Executes children in order until all
return failure or one returns success.

3) Parallel Node: Executes children in parallel” (ticks in
order one at a time).

4) Decorator Node: Manipulates the return value of a
single child.

Our old behavior tree was extremely large, with over 60
nodes. Our new behavior tree simplified the logic and removed
some redundant actions/behaviors, resulting in about half the
nodes being utilized. Our behavior tree was also split into
two separate behavior trees, one for zombies and humans.
We realized that it made more sense to modularize the tree
and separate the two, making it easier to work on each part
separately.

Stand Stil

Fig. 2. Zombie Behavior Tree

The zombie behavior tree consists of nodes for checking
cooldown (a random number of ticks between 10 and 30) and
sequences for detecting humans, detecting pheromones, and
patrolling.

Fig. 3. Human Behavior Tree

The human behavior tree is more complex, consisting
of logic for cooldown, detecting zombies, food, and pa-
trolling. When detecting zombies, it checked if the human
had weapons. If so, the human would run away. For food, it
checked if the human was hungry and if it was then they’d
search for food. Else, the human would patrol and mate when
they’re free.

III. HUMANS

Humans, with more developed decision-making skills, re-
quire a more complex pathing system than the zombies. While
the zombies tend to wander aimlessly with their pack, humans
need to be able to independently identify and navigate to
targets. This section will be broken down into perception,
which is how both humans and zombies identify targets, and
navigation, which is how humans path towards targets.

A. Perception

Both humans and zombies use similar perception behavior,
but with different parameters. Actors start with both hearing
and vision fields around their current position to identify
targets. These fields are represented by disks with radius and
position. When running, humans trigger sound events that
zombies can "hear’. Zombies will hear a target if their hearing
field overlaps with the field of the sound, using circle-circle
intersection. In a similar fashion, humans and zombies will
’see’ a target if it overlaps with their vision field, with the
added constraint that they must be able to cast an uninterrupted
ray to this target (seeing it), and it must also be within some
field-of-view angle of their forward vector. This results in
humans and zombies being able to hear in all directions, but
only being able to see objects that are in front of them (shown
in Figure 4).

Once a target has been identified, humans will add it to
their 'memory’, or a list of targets. This list of targets can
then be scanned to make decisions for the behaviors defined
in the behavior tree. After an adjustable interval, humans will
remove old targets from their memory, 'forgetting’ them. By
adjusting the parameters, for hearing and vision radii, memory
duration, and field-of-view angle, the humans and zombies
can have different perception behaviors. In the show we were
originally inspired by, the zombies are often blind, but can
echolocate, so we tended to give zombies lower vision radii
and FOV angles, but higher hearing radii.

Fig. 4. A human’s vision radius and a red ray cast to the target they can see

B. Navigation

In order to navigate to targets throughout the map, humans
need to be able calculate a path, follow this path, and avoid
obstacles along the way. Path finding is typically composed
of a graph representing the environment and an algorithm that
calculates the most optimal path from a start node to an end
node on this graph. In our case, we chose to use a grid to
represent the environment due to their simplicity, ease of use,
and adjustable precision. We implemented a grid ’generator’
that takes in a desired size in the x and z dimensions in
world coordinates, and desired node radius (the size of each
grid cell). The generator then calculates a graph representing
the environment, with functions to return the node associated
with a world point, the neighbors of a node, and whether a
world point is reachable and unblocked. If a section of the
environment is blocked by walls or obstacles, these grid nodes
are marked as unwalkable when the graph is generated, so they
will not be included in path calculations.

A* Algorithm:

Our implementation uses the A* algorithm for calculating
a path from one node to another on the environment grid. The
A* algorithm is similar to the popular Dijikstra’s algorithm,
in that it uses edge weights to calculate the least-cost path to
a particular node. It deviates from Dijikstra’s by calculating
the shortest path from just one node to the end node, rather
than calculating all paths to the end node. Another important
distinction is that Dijikstra’s finds the actual shortest path to
the end node, whereas A* estimates the shortest path to the
end node, prioritizing speed and efficiency over correctness.
In our implementation, the “cost” is distance, but other factors
could also be included.

Starting from the first node, the neighbors of a node are
examined. Node examination order is determined based on a
priority queue. When examining a node and its neighbor, a
new cost is calculated using the sum of the cost from the start
until the current node and the cost of the current node to that
neighbor. If a neighbor has been determined unwalkable by the
grid, it will not be examined. If the new cost is the shortest
cost to that neighbor found so far, the neighbor is added to
priority queue. The priority is the sum of the new cost and
some heuristic of choice that estimates the distance between
the neighbor and the final goal. Because we utilize a grid-based
graph, we chose to use Manhattan distance as our heuristic to

Fig. 5. A sample environment with a human’s start and end positions, white
grid lines, and green calculated path nodes

estimate distance. This heuristic is just an estimate because
the algorithm has not yet calculated if there will be obstacles
in the way of this path; the shortest path based on Manhattan
distance may not actually be achievable or may become longer
due to obstacles in the way. Once all the neighbors of a node
have been examined, the algorithm dequeues the next node in
the priority queue (with the next lowest cost) and examines
its neighbors. This repeats until the goal node has been found.
An example of this path-finding in action is shown in Figure
5.

Following Path:

Once a path has been calculated to the goal, humans need
to be able to realistically follow this path. This is achieved by
iterating backwards through the path and raycasting from the
human to that path node to determine if the human can see the
node, and setting the human’s target to the furthest node on
the path the human can see (Figure 6). As the human reaches
its current target, this repeats to find the next target along the
path, until the human has reached the goal node. This results
in more natural human movement than following lines on a
grid, especially in tight corridors and amongst many obstacles.

Obstacle Avoidance:

Alongside this global path following, humans also need to
be able to avoid obstacles on a local scale. This is achieved in
a similar way to the boiding behavior, using steering vectors.
While walking, the humans cast 4 rays out in front of them
(Figure 7). If a ray hits another object, the human applies some
small velocity in the opposite direction of that ray. This helps
humans naturally avoid other humans and walls when turning
around corners and navigating through smaller spaces.

IV. FUNGI

The fungi plays the role of a pest against the humans and a
mutual symbiote with the zombies. Humans act hostile towards
the fungi, destroying them when they find them. However, the
fungi releases pheromones which alerts the zombies that there
is a human near the fungi. The zombies then navigate to that
location, hoping for a scrumptious meal. In the end, the fungi

Fig. 6. A human casting yellow rays to each path location until it finds the
furthest path node it has direct eyeline to

Fig. 7. A human casting green rays out in front of them to detect obstacles,
with some rays from previous movement

helps the zombies with hunting, while the zombies drive away
the fungi, highlighting their mutualistic symbiosis.

A. L-system

In the simulation, the fungi is simulated with an Linden-
mayer system (L-system, for short). We start with an initial
symbolic representation of the system (the current sentence).
A grammar contains substitution rules that each represent a
growth pattern. At each generation, a symbolic update engine
iterates through the sentence, replacing each character with the
corresponding pattern in the grammar. Finally, a turtle renderer
parses through the sentence and draws the design indicated.

Because the fungi must interact with other entities in the
simulation, there are other features that must be implemented.
Below, I go over the details of each major feature we added.

B. Rendering

Figure 4 shows a list of the commands the turtle renderer
(see python turtle module for more details) calls when it
encounters each character. Each command corresponds to a
modification of the turtle’s state that enables it to draw the
fungi. The commands most relevant to the fungi are the push
and pop commands, which makes the turtle save its current

Fig. 8. A tree generated by an L-system

position and angle so that it can get back to it later in the
operation. This enables the fungi to have branching structures
that may also grow new branches.

One significant problem we faced when implementing this
feature was creating a mesh out of the fungi. Unity has a
line renderer function, but the documentation says that each
line drawn must be associated with a game object. Given that
the L-system algorithm is inherently exponential (the effects
of substitution rules are compounded at each generation), the
amount of game objects created would be concerning if we
used the line renderer. Thus it is more efficient to create our
own mesh for the fungi.

To do this, we kept track of the position of the turtle at
each character and added vertices (and the respective triangle
indices) every time the turtle moved forward. For branches
to appear accurately, we need the turtle state pushed onto the
stack needs to include the index of the vertex that the turtle
is at. When the state is popped, we cache that index until the
turtle moves in that branch (this is to handle the edge case
where we immediately push after we pop).

C. Animation

To animate the fungi (show the intermediate stages between
each generation), we will interpolate the lengths and angles
of the branches added for the new generation. However, we
want to control which parts of the patterns are part of the old
generation and the new generation. To accomplish this, we add
new commands (" and ’)’ that enclose these “new growths”
in our grammar. The turtle renderer will turn on interpolation
upon encountering a ’(’ and turn off interpolation for ’)’. The
interpolation factor is dependent on a timer variable capped at
a target time that is updated every frame and reset at the start
of every new generation. The result is a continuously growing
mesh that looks alive.

D. Collision

Because we want our humans to destroy the fungi, the
fungi needs to have collision geometry. The collision geometry

[”.
o

Update Update
Sentence Sentence

B Em

Read Grammar I

Init Sentence

Ea

Fig. 9. Overview of the L-system Algorithm

Fig. 10. Commands the turtle renderer reads

—

Fig. 11. The turtle must keep track of the back indices in the stack when
creating a new branch off of another.

Fig. 12. Bounding volume hierarchy of the Sierpinski triangle

needs to provide us with the exact segment the object collided
with (we want to destroy the branch of the fungi from that
segment). There are multiple ways to implement this in our
simulation. First, we may create a large axis-aligned bounding
box (AABB) to enclose the entire fungal structure. While it is
efficient, it comes at the cost of accuracy, because in addition
to the fungi, the box encloses the space surrounding the fungi
(see figure 7). On the other hand, we may use an AABB for
every segment of the fungi. However, this is computationally
inefficient because we create many boxes (and game objects)
and we need to iterate through every segment per collision
check (O(n)).

Clearly, we have a dilemma to balance between accuracy
and efficiency. To have the best of both worlds, we organized
the bounding volumes into a bounding volume hierarchy
(BVH). The idea is to enclose the AABBs (children) into larger
AABB (parent) and then enclose those AABBs into another
even larger AABB until we create an AABB that encloses
every single smaller AABB. To sum it up, the hierarchy creates
a tree of bounding volumes, where each parent is guaranteed to
enclose its children and its leaves are AABBs of each segment.
In our implementation, we built the BVH incrementally as
the turtle parsed through the current sentence (this will be
important in the next section).

This makes every collision check a O(log n) tree traversal.
If an object collides with a parent volume, then it is worth
traversing its children to find the segment that the object
collides with. If there are no colliding segments, then we may
check the parent’s siblings. If no colliding segments are found
throughout the entire tree, then there is no collision.

This does raise the question of how we decide which boxes
to enclose. This is left up to the programmer’s discretion. For
instance, one may enclose the boxes which are the closest
together, use the median of the overall bounding box, or group
boxes such that the area of each AABB is minimized. We use
the final heuristic for the simulation as it seems to yield more
accurate results.

1) Problems with sorted input: After our first iteration of
the bounding volume hierarchy, we found that the BVH was
unbalanced (structurally, a linked-list). This is a problem with
the incremental BVH construction. Because we are creating
enclosing AABBs for segments that are most likely close to
each other, the AABBs are more likely to enclose the new
AABB created for the previous segment. The algorithm would
create boxes that nest each other over and over (refer to figure
7). This is bad for efficiency because our search becomes
O(n) (which is no different than iterating and checking every
segment). This is essentially the problem of an unbalanced
tree. To alleviate this problem, in other problems, we use AVL
trees, which have a self-balancing property (guaranteeing that
the height of the tree is at most log N). It employs tree rotations
to make sure that the tree is balanced and valid. We may use
this same idea here: we find alternate valid representations of
the hierarchy that yield the next best results (with respect to
the heuristic). This ensures that the tree traversal is still O(log
n) and valid.

2) Breaking branches: Once we obtain the segment where
the collision occurs, we want to delete the rest of the branch

Fig. 13. Nested boxes as a result of an unbalanced hierarchy

Fig. 14. Fungi cannot grow past walls, filling the corridor as much as possible

starting from that segment. We may accomplish this by
modifying our symbolic update engine so that it can delete
the corresponding substring (of the deleted branch) from the
current sentence. So in addition to the segment collided, we
also need to obtain the index of the character the segment
represents in the sentence. The substring from that index to
the first occurrence of ’]’ (of the same branch of the index,
not a child branch) is deleted from the sentence.

Once the sentence is modified, the fungi must be rendered
again with the correct visual and physical representations. This
operation must be done with care. If multiple collisions occur
at the same frame, it would be naive to apply them in the
order they are processed. If this is done, it is possible for
indices of some collided segments to become invalid because
previous processed segments have deleted them. Collided
segments must processed in descending index order (as they
appear in the symbolic representation) to prevent out-of-range
exceptions. In addition, all sentence updates must be done
before the next render because rendering causes the BVH to
change, invalidating any collided indices found in the previous
frame.

E. Stochastic L-system

Finally, we want our L-system to have variety and random-
ness. This can be easily implemented by making our grammar
stochastic. For each pattern of a production rule, there is a
probability associated that determines how likely that pattern is

used. The symbolic update engine would roll to decide which
pattern to use, resulting in random, spontaneous growths, even
when the system works with the same grammar. Not only does
this create a variety of patterns, it allows our fungi to branch
out into arrows that it was not intended to reach.

F. Optimizations

The L-system algorithm is inherently a slow algorithm. The
growth of the fungal structure is exponential because each
character is replaced with a string that may contain multiple
instances of that same character (F -; FF -; FFFF -; ...). The
turtle renderer is implicitly single-threaded (each segment’s
location is dependent on the segments before it), so there is no
way to clear-cut way to parallelize rendering. These reasons
make L-systems potentially laggy when segment counts are
too high.

There are some optimizations we implemented to mitigate
these troubles. First, we do not render new geometry at every
frame. The clearest candidate for saving computation time is
for the lerped stages between generations. We may consider
these transitions from one generation A to another generation
A’, although upon closer inspection, we are computing the
geometry of A’ in the beginning of that period (t = 0). A
lerp only involves changes in the vertex coordinates not the
overall triangle structures (indices) of the mesh, so we only
need to recalculate the vertex coordinates and AABBs for
each segment at each frame (as opposed to generating new
coordinates/AABBs).

When branch deletions happen, the sentence is recon-
structed. But the sentence may now have redundancies i.e.
empty parentheses/brackets, nested parentheses, etc. Remov-
ing these helps the turtle renderer not waste time popping and
pushing off the stack. Also pertaining to branches, the number
of segments may be limited/capped to a certain amount
(instead of letting it grow infinitely). This is analogous to a a
natural growth capacity many organisms have. This should be
tweaked with care however, since L-systems are exponential
algorithms (implying segments may increase exponentially as
well, potentially overshooting the segment cap by a lot).

Some other optimizations we could’ve done included par-
allelizing symbolic update, caching rotations, and memoizing
organ structures. First, the sentence update is an embarrass-
ingly parallel problem, since each substring’s successor is
independent of another’s. So we could’ve divided the string
into multiple workloads, processed each on a different core in
parallel, and joined the threads to form our successor sentence.
Next, since we know that the angle is constant, there exists a
set amount of turns such that we will reach the same angle
that we started. These values may be cached, so that there is
no need to recalculate the quaternions during runtime. Finally,
we could do the precomputation per pattern and memoize the
vertices/indices of the mesh so that at generation time, the
turtle skips the computation and just dumps the precomputed
vertices (scaled and rotated, of course) at its current location.
Although these ideas are all sound, we sadly didn’t have
enough time to implement them. We look forward to looking
at them at a later date.

V. RESULTS

When we put each component together, we observe the
system develop some emergent behaviors. First off, the most
basic behavior is that if a human gets too close to a zombie,
the zombie horde will go after it, killing the human. This
utilizes the zombies perception, as well as its boid movement
(for hording) and defined behavior tree. Even though zombies
have a limited range of perception, the zombies aggressive and
cooperative behavior helps it hunt down humans one by one.

Another observation is that when humans collide with the
fungi, the zombies get alerted to them and navigate to that
location. Although this happens sometimes (when there is no
wall between the zombie and fungi), the fungi does symbi-
otically helps the zombies when they are hunting. We would
also like to note here that the fungi, because we didn’t disable
collision with walls and allowed the fungi to regrow, is able
to fill up an entire space and not grow through environment
geometry. This creates the a floodfill effect, making the fungi
fill up spaces as much as possible and creating a barrier in the
maze that humans must pass through (if they dare).

Finally, we found that the zombies are a bit too over-
powered. Like the movies in popular media, it seems the
zombies almost always finds the humans. There are times
when the humans can survive however. Because the zombies
have limited perception, the humans could wander and hide
into a corner or behind a wall, and if they are fast enough,
then the zombies will be unlikely to find them, falling back
onto their default random targeting behavior.

VI. CONCLUSION

In conclusion, our simulation shows the interactions be-
tween three types of entities playing 3 different roles: prey,
predator, and symbiote. In this simulation, the predator (zom-
bies) wipe out the prey (humans) with help from the the
symbiote (fungi). Each contribute to the emergent interactions
of the simulation and the consequences that come out of them.

If we had more time, we would spend it on tuning the be-
havior tree and ensuring the simulation is more cohesive. The
humans and zombies have suboptimal pathing and sometimes
get stuck and clump to each other in the simulation. The fungi
are also still a bit too slow, so we would also investigate that.
Overall, we’ve accomplished the goal we started out with: to
create a simulation of a zombie apocalypse. In fact, if we
examine the simulation literally, it corroborates with popular
media, stating that humans would probably die out in a zombie
apocalypse if the zombies have a symbiote.

REFERENCES

[1] Robohub, ”Introduction to Behavior Trees,” Robohub, [Online]. Avail-
able: https://robohub.org/introduction-to-behavior-trees/. [Accessed: 19-

Jun-2024].

[2] J. A. Tunbridge and M. A. Jones, "An L-systems approach
to the modelling of fungal mycelium,” Semantic Scholar,
[Online]. Available: https://www.semanticscholar.org/paper/An-

L-systems-approach-to-the-modelling-of-fungal-Tunbridge-

Jones/26¢f8145a41a725df4241f5d0a33ce56b0e91dab. [Accessed:
19-Jun-2024].

[3] E. Catto, “Dynamic BVH,” Box2D, [Online]. Available:
https://box2d.org/files/ErinCatto_DynamicBVH_Full.pdf. [Accessed:

19-Jun-2024].

[4] D. Terzopoulos, "Deformable Models,” UCLA Computer Science, [On-
line]. Available: https://web.cs.ucla.edu/ dt/papers/gmod07/gmod07.pdf.
[Accessed: 19-Jun-2024].

[5] W. Shao and D. Terzopoulos, “Autonomous pedestri-
ans,” UCLA Computer Science, [Online]. Available:
https://web.cs.ucla.edu/ dt/papers/gmod07/gmod07.pdf. [Accessed:

19-Jun-2024].

[6] R. RedBlobGames, “Introduction to A*” Red Blob Games,
[Online]. Available: https://www.redblobgames.com/pathfinding/a-
star/introduction.html. [Accessed: 19-Jun-2024].

[71 M. Zucker, ”Optimizing L-systems,” [Online]. Available:
https://mzucker.github.i0/2020/03/28/optimizing-lsystems.html.
[Accessed: 19-Jun-2024].

