
AlienGLRenderer: A simple 3D OpenGL renderer for simple scenes

Arrian Chi

Abstract— AlienGLRenderer is a renderer, written in C++
and OpenGL, designed to support the creation of simple scenes
(inspired by the Quake Engine). The overall goal of this project
is to streamline the rapid creation of simple scenes for artistic
expression and to showcase evidence of technical knowledge. In
this report, I showcase what features have been implemented,
the technical challenges faced, and the future work to improve
the renderer.

I. OVERVIEW

Computer graphics is a field of computer science involved
in the manipulation of data to generate visual content on
a computer. Some may call it esoteric in the way that it
combines a variety of paradigms from other fields of study,
such as math, optics, and physics, for the overarching goal
of producing purposeful images on a screen. Its applications
in the film industry, the video game industry, and even in
scientific visualization prove its importance in our society.

AlienGLRenderer (Link to project here: https://
github.com/dinoplane/gl_alien_renderer) is
a hobby project implemented in OpenGL and C++ that I
started in the summer of 2024 in hopes of pursuing a career
in computer graphics. The project was inspired by the Quake
Engine, a game engine developed by id Software in the
1990s. The engine was known for its simplicity and ease of
use, which made it a popular choice for modders and indie
developers. I wanted to create a similar engine that would
allow me to experiment with graphics features and improve
my skills in C++ and OpenGL, and also enable me to create
simple graphics scenes in a easily configurable format.

In this paper, I would like to demonstrate the knowledge I
have attained from the genesis of the project till now. I will
discuss the process of the implementation of the renderer,
the technical challenges I have faced through the course
of its creation, and what future lies ahead for this renderer
(including any remarks I have about OpenGL in the modern
age).

A. Design

In the past, I have used OpenGL in a few other projects.
The issue I found with these projects was that they were 1)
too unoptimized and 2) hard to maintain. A few common
tropes I found in these projects was encapsulation of render-
ing logic to the objects to be rendered (that is I implemented
a render function for every cube, every sphere, etc.) and
the frequent rebinding of buffers, shaders, and assets to
render different objects (a buffer was initialized for every
rendering primitive...). These issues arose from the blind
usage of code from tutorials and introductory classwork and
the misconception that object-oriented programming was the
best way to conceptualize code.

The OpenGL API can be understood as a state machine
that uses its current state to perform rendering tasks [1].
The user must bind state (buffers, shaders, textures, etc.
all represented by an ID) to the OpenGL context before
performing draw calls. One may conceptualize it like a
switchboard, where the operator (the programmer) must
switch the connections (the OpenGL state) to get the desired
output (the rendered image). The reason the API is designed
this way is a result of the history of graphics hardware
(which could be expanded upon in its own paper). Simply
put, graphics hardware started out with using fixed function
pipelines that were highly customizable but required manual
configuration [2]. The OpenGL API served as a high-level
abstraction implemented by hardware vendors to allow pro-
grammers to configure the hardware without needing to know
the specifics of the hardware.

So naturally, if one tries to religiously use object-oriented
paradigms to encapsulate rendering logic, they would end up
with a lot of overhead. For example, let us imagine we have
a scene with many cubes, each having their own transforms.
The naive programmer probably do this: for each object, bind
its mesh data and transformation matrices to the OpenGL
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context. Then, issue a draw call to the GPU.
Note all this data lives in CPU RAM and must be copied

to the GPU for it to be used. But CPU to GPU memory
latency is relatively high. So if you are sending data to the
GPU individually for every object, you are waiting for the
GPU to finish rendering the object before you can send the
next object. The CPU would be stalling while waiting for the
GPU to finish rendering, resulting in significant overhead and
bottlenecks.

Luckily, the OpenGL API permits the batching of state to
minimize draw calls and memory transfers. In our example,
the programmer would recognize that all cubes used the
same mesh but had different transformations, so they instance
all the cubes with the same mesh data and send every
transformation matrix at once in a large matrix buffer to the
GPU. In the vertex shader, the appropriate transformation
matrix would be indexed and used for world space to model
space transformations. This would reduce the number of
draw calls and memory transfers, thus reducing the overhead.

The aggregation of state to reduce high latency com-
putation is a common optimization technique in computer
graphics and is used in many modern game engines. How-
ever, it requires that the architecture of the renderer be
data-oriented (separating logic and data) rather than object-
oriented (combining data and behavior). Thus, I decided that
the renderer would be designed such that it knew about how
to render every object primitive that could be renderered in
a scene. This provides me with a lot of flexibility in how
I can render objects and manipulate draw calls, which I
will demonstrate when I discuss the features of the renderer.
Note that I am not completely abandoning object-oriented
programming, but rather thinking more about the data the
application is manipulating.

II. FEATURES IMPLEMENTED

A. Renderer Mainloop

As mentioned before, I did not completely abandon object-
oriented programming in the development of this renderer.
The Renderer object itself contains all the data and logic
needed to render a Scene object. A Scene object is a
collection of data structures containing all the objects in a
SceneData object that the renderer may directly read and
use when rendering. A SceneData object contains that
holds the uncompressed data read from a .scn file. Finally,
.scn files are raw map data files (with a similar format to
the Quake map format [3]) that contain all the scene objects
and their properties. The static class containing the logic to
load a SceneData from a .scn file and a Scene from a
SceneData is called the SceneLoader.

To explain the algorithm of the render loop, the user
supplies a path to the .scn file they want to render, which
gets converted into a Scene object. The Renderer object
is created and initialized with the size of framebuffer textures
the renderer will render onto (more on this when discussing
post-processing). While the window is open (the user has not
closed the window), the application will first update the scene
(which includes updating the camera, updating the cloth

simulation, etc.), then call renderer.render(scene)
for every renderer initialized. The application will then take
each renderer’s framebuffer texture and render it onto the
main framebuffer texture. After that, the application will
render any UI elements (using ImGui) on top of the main
framebuffer texture. Finally, the application will swap the
buffers, poll for events, and repeat the process.

B. What is done in the renderer.render(scene)
call?

The renderer.render(scene) call is the most im-
portant call in the mainloop. It is where the renderer will
render the scene onto the framebuffer texture. The renderer
will first update the camera (if the camera is not locked),
then update the cloth simulation (if the cloth simulation
is enabled). The renderer will then iterate through all the
rendering tasks in the scene and render them.

C. Direct State Access (DSA)

I previously stated that the OpenGL API is a state ma-
chine that requires the programmer to modify it to perform
rendering tasks. In the past, this was not only limited to
drawing, but also the manipulation of data. The programmer
would bind the buffer to the global context, do whatever
modifications they needed to the buffer, and then unbind it
when not in use [4]. This is no different than being limited
to a set number of global registers you are forced to use
to modify your data. This could quickly become an issue
because logic in different parts of the application must share
the same global state in order to modify data in their local
scope. This is a big problem especially if the app is organized
in an object-oriented fashion.

Direct state access is a feature introduced in
OpenGL 4.5 that allows the programmer to modify
OpenGL objects without needing to bind them to
the global context. . The relevant calls to this are
glCreateBuffers, glNamedBufferStorage, and
glNamedBufferSubData, which creates a buffer,
allocate memory for the buffer, and modifies the data for
the buffer, respectively. Semantically, these calls treat each
buffer as its own piece of data, independent of the global
state. All that is needed is the buffer’s name, which is
generated by glCreateBuffers to be used by other calls
to identify the buffer of interest to use. In AlienGLRenderer,
I use DSA for all data buffers (vertex, index, uniform,
frame, etc.) to reduce the overhead of binding and unbinding
buffers for every object to be rendered.

D. Scene Loading

AlienGLRenderer’s scene loading was inspired by that
of the Quake Engine and its relatives [3]. Fig. 1 shows
an example file format of the .scn file. The format is
pretty straightforward; every object in the scene stores its
data as a series of key value pairs (kvps). The currently
supported kvps include classname, origin (position),
angles(rotation), scale, and material(currently just a
shader name). The most important key is the classname,



Fig. 1: An example of the .scn file format

which is used to identify the object (i.e. a cube, an entity, a
camera, etc.), which indicates how it should be processed.

E. Instancing

Briefly covered in the previous section, GPU instancing
is the idea of drawing multiple copies of the same model
mesh with slightly varying data all at once (i.e. blades of
grass with varying heights/positions). In terms of draw calls,
GPU instancing reduces several draw calls of the same mesh
into one single draw call ([5]). The benefit is that we reduce
the expensive CPU to GPU communication overhead and the
CPU stalls that come with it.

In the scene, entities (any object with a classname
that does not have special handling) are the only ob-
jects that are instanced. It is your typical 3D object
rendered into a scene consisting of a mesh, a shader,
and a transform. The SceneLoader uses the con-
catenated mesh path and shader path as the key for
an entityInstanceMap (really, should be called an
entityInstanceRenderTaskMap). Each key is asso-
ciated with an EntityInstanceData (should be called
an EntityInstanceRenderTask), which aggregates all
the entities with the same mesh and shader into a single
rendering task. Each rendering task contains the instance
count, a buffer of all the transformation matrices for each
entity, the model data, and the shader data. The model
data contains all the necessary meshes, materials, textures,
and draw commands (more on this later) required to ren-
der its own mesh. So when the renderer is rendering the
scene, it will iterate through all the rendering tasks and
issue the draw calls with appropriate instancing data (i.e.
the instance count and instance buffers). At first, this was
done with glDrawElementsInstanced, but the call
was later changed to glMultiDrawElementsIndirect

to accomodate for indirect draws.

F. Model Loading

AlienGLRenderer currently only accepts .glTF files
(graphics library transmission format) ([6]) as a valid model
file. It leverages the fastgltf library to parse the .glTF. I
decided to use the glTF file format because it stores data in
the JSON format and use indices to reference data organized
in the flat hierarchy (”scenes refer to root nodes by index,
nodes refer to meshes (which are composed of primitives),
which refer to materials, which refer to textures, which
refer to images”). A static class named ModelLoader is
responsible for loading the .glTF file and converting it
into a Model object, creating the buffers for each category
of data, as well as their indices. One key point to note is
that every single Model is associated with a buffer of draw
commands for each primitive (individual parts of a mesh)
(more on this in the next section), the transforms of all
nodes in the model, and a buffer of node primitive properties
containing indices for the draw command to index the
primitive’s transform (that of the node their mesh is indiced
in). (This really needs a figure). These draw commands are
issued by Renderer per EntityInstanceData in the
Scene when rendering, preserving the original transform
hierarchy of the .glTF model.

G. Indirect Draw Commands

In pursuit of better performance (from both instancing
and frustum culling), AlienGLRenderer uses indirect draw
commands (glMultiDrawElementsIndirect) to ren-
der entities. When using indirect draw commands, draw calls
are abstracted as command structs that contain parameters for
the draw call (i.e. same parameters as glDrawElements).
The command structs are stored in a buffer and sent to the
GPU, and when glMultiDrawElementsIndirect is
called, the GPU will submit draw calls for each struct in
the buffer. This feature opens up the possibility of parallel
draw command manipulation, either on the CPU (each thread
can write to the command buffer) or the GPU (use the draw
command buffer just like any buffer in a compute shader). In
AlienGLRenderer, the latter case is showcased in the frustum
culling feature to set the instance counts of every draw
command in the buffer for an entityInstanceData
struct. Every model has its own draw command buffer (a
draw command for each primitive to be rendered) that stays
on the GPU (no CPU readback) for the duration of the
application’s lifetime.

H. Frustum Culling

If rendering is the bottleneck of an application, it is
common to reduce the amount of objects to be rendered
using a culling algorithm, which filters draw calls based on
the visibility of the primitives relative to the camera before
they are issued to the GPU. There are 3 noteble culling
algorithms: back-face culling (culling the polygons whose
points are in the opposite winding order i.e. if counter-
clockwise winding is front-facing, then all polygons with



Fig. 2: A visualization of frustum culling

Fig. 3: A sphere may be inside the plane, forward, or
backward. Compare the signed distance from the sphere’s
center to the plane check collision with the frustum.

clockwise winding are culled), occlusion culling (culling
primitives that are hidden, or occluded, behind other visible
primitives closer to the camera), and frustum culling (culling
primitives that are outside the view frustum of the camera).
AlienGLRenderer implements frustum culling (see Fig. 2),
and in the sections below, I will discuss my process of
implementing it.

1) CPU Frustum Culling: CPU frustum culling implies
that the draw calls are filtered by the CPU before they
are issued to the GPU. Because this was implemented
before instancing and indirect draw calls were added, the
implementation process was easy. First, bounding volumes
(collision geometry) were specified for each object in the
scene. In the Model class, a bounding sphere with a radius
equal to the distance of the model’s furthest point from
the origin is specified. Each camera is associated with a
frustum defined by 6 planes (a normal and a distance). The
Renderer would use the collision geometry to check if
the bounding sphere of the object is partially inside the
view frustum of the camera (check the signed distance of
the sphere’s center to the plane is greater than the negative

radius of the sphere for every plane, i.e. see Fig. 3). If it
is, the draw call is issued, otherwise don’t do anything. This
process was repeated for every object in the scene every
frame. An issue I have with this process is that the check
was sequential (iterating through every object in the scene).
I wanted to see if it is possible to parallelize this process and
also incorporate it with instancing and indirect drawing.

2) GPU Frustum Culling: I had two versions of GPU
frustum culling, one unoptimized and another that was.
Both incorporated instancing and indirect draws in their
implementions. To start, the naive approach required a buffer
containing a boolean for every instance in the scene to store
the visibility of that object. A compute shader would execute
the collision check for all objects (in parallel) and set their
corresponding visibility bit. In the vertex shader, the index
of the instance (gl InstanceID) would be used to index
the visibility buffer to check if the vertex is visible. If it is,
the transform of the instance is obtained and rendering goes
on as usual, but if not, the vertex would be discarded. While
the scene visually shows frustum culling is implemented,
this process does nothing to help the performance of the
renderer because the draw calls of the invisible instances are
still issued to the GPU and executed.

The issue in the first version is that the we are using
instancing for the number of instances in the scene instead
of the number of the instances visible in the view frustum.
The second version of GPU frustum culling takes care of
that by atomically accruing the count of visible instances in
the culling compute shader. Instead of a buffer of booleans,
it uses a buffer of indices corresponding to those of visible
instances. After the buffer is computed, another shader sets
the instance counts for every draw command struct in the
draw command buffers of the associated model. Finally, the
indirect draw call is issued to the GPU, and like before, the
vertex shader will use the gl InstanceID to index the
visibility buffer to obtain the transformation matrices of the
instance, only this time, only the visible instances have their
draw calls issued.

I. Texture loading

Textures in the .gltf file format are applied per primitive
of a mesh. Because of the way instancing and indirect
draw batch all the mesh draw calls together and the fact
that OpenGL doesn’t permit the user to create an array of
textures (that would be way easier to implement because the
fragments would select which texture they are using), the
next best way to reimplement textures was to use a texture
atlas. This required the model loader to calculate the size of
all textures and pack them into a single texture. Additionally,
some additional computation is required to recalculate the
texture coordinates of each vertex on the model. I opted to
do this calculation on the GPU because it was more intuitive
for me (better interface to program with). But one may also
recompute the same texture coords on the CPU so that this
calculation is only done once.



J. Multiple Cameras and Render Targets

Before continuing, I should explain the architecture of
the Renderer class itself. To begin, the Renderer class
contains all the vertex array objects (objects that the OpenGL
context use to determine the layout of the vertex stream)
for each object type, the compute shaders for rendering
operations (e.g. cull shaders), the uniform buffers available
to every shader (e.g. camera view projection matrices) and
the framebuffer textures the renderer must render onto. The
renderer contains the logic to bind the appropriate data of
each type of object to the OpenGL context and issue that
call. The renderer also contains logic for any post-processing
effects that should be applied onto the renderered image.
As mentioned before, in the application mainloop, the app
will blit the framebuffer textures onto the main framebuffer
texture (adjacent to each other horizontally) after the render
call is completed for every Renderer object. I am aware
it may be better to have the Renderer specify where on
the main framebuffer to write to, but I have not implemented
that yet.

This design makes it easy for me to add multiple camera
views to the scene. Each camera’s data lives a static vector
in the Scene object, so if we have two Renderer objects,
each indexing a different camera in the scene, we can render
the same scene with two different perspectives and display
them side by side. In addition, each renderer can add their
own post-processing effects to their framebuffer textures, so
the user can see the scene in different ways. It is also possible
to apply these framebuffer textures onto objects in the scene
(i.e. a real-time security camera monitor).

K. Post-Processing

Post-processing is when you take a rendered image (the
process) and apply effects(shaders) to it (the post-process)
before displaying it on the screen. As mentioned in the
previous section, this is made possible through framebuffer
textures in each Renderer object. Specifically, Renderer
has a source texture and a destination texture. When
.render() is called, it writes to the source texture when
going through the scene. As the final step, the source texture
is rendered onto a quad, the post-processing shaders are
binded, and the output is written to the destination texture,
which will be blitted onto the main framebuffer. To showcase
the feature, I implemented a very simple edge-detection
shader using kernel operators that highlights the edges of
the primitives in the image.

L. Particle System and Cloth Simulation

For the final feature to date, and for the final project of a
mechanical engineering class, I implemented a cloth simu-
lation using the Discrete Elastic Plates / Shells algorithm[7]
[8]. This system was implemented on top of a base particle
system interface. To me, on the basic level, a particle system
is an object that manages a collection of particles (objects
with a mass, position, and velocity), usually through the
application of forces. At every frame of the renderer, the
forces are calculated and the positions are updated and

Fig. 4: A cloth afixed as if it were a tablecloth.

rendered. The forces also adhere to hard set of rules that
help create a cohesive system.

This broad definition allows me to lump in many seem-
ingly different effects together. For instance, streaks, stars,
and smoke particle effects are no different than boids[9],
fluid[10], and cloth simulations. All these systems are gov-
erned by a set of rules that dictate the behavior and interac-
tion of the particles. The difference is what set of rules each
abide by.

For the cloth simulation (see Fig. 4), the rules are derived
from the DEP/S algorithm. The algorithm is a numerical
simulation algorithm that simulates the behavior of a cloth
as a series of connected plates and shells (see Algorithm 1).
In short, The cloth is discretized into a mesh of particles,
each connected to its neighbors by edges. Elastic energy is
concetrated throughout the mesh as stretching energy (from
two particles pulling on each other through an edge) and
bending energy (through a set of 4 particles forming a hinge
to rotate about). External forces act on every particle at every
frame, which provide the potential energy for the cloth to
move. AlienGLRenderer implements a version of the DEP/S
algorithm that uses implicit integration (Newton-Raphson
method) to solve for the next position of the particles, for
accuracy purposes. However, it is possible to instead use an
explicit integration method (like Euler’s method) for speed
purposes. Additionally, it leverages the Eigen library [11]
to do matrix operations (OpenGL and glm does not provide
functions for matrices greater than size 4) and the PARDISO
library to solve the matrix system [12] [13] [14]. In terms
of rendering, the cloth is treated as a mesh of particles
rendered as a lines connecting points. The fixed points in
the simulation are highlighted with a different color to show
the user where the cloth is anchored.

III. ISSUES

In the course of development of this project, I encountered
a few issues that I would like to discuss. These issues that
may have hindered my progress and/or still exist in the
project. Regardless, I am aware of their existence and am
currently figuring out whether I should solve them or not /
how to solve them.



A. Subtleties in OpenGL

I was caught up in a few subtleties in OpenGL. To start,
OpenGL memory alignment rules that make working with
vec3s harder than it should. In the cloth simulation, the DEP
algorithm assumes that the DOF vector is a 3 × n by 1
column vector, where n is the number of vertices. My initial
naive implementation consisted of an array of 3 by n floats to
represent the DOF vector used for calculating the forces and
use the same DOF vector for drawing (specifying the vertex
format to assume a vertex stream of vec3). This would work
if I didn’t use my DOF vector in the other (compute/debug)
shaders (specifying the DOF vector as a shader buffer storage
object (SSBO)).

However, according to the OpenGL specification, when
using SSBOs and the std430 layout, a vec3 is aligned to
16 bytes (4 floats) in GPU memory. This means that in the
shader, when I try to index into an array of vec3s, the GPU
will retrieve the result with 3 floats plus 1 byte of padding.
So when I copy the chunk of buffer data (the DOF vector)
from CPU memory into GPU memory, I had to ensure that
the total memory size of the DOF buffer is a multiple of
16 bytes. Otherwise, the GPU would read 3 floats from the
buffer, skip one float part of another point, and then read the
next 3 floats. This means that after my force calculation, I
had to create a way to send the data to the GPU such that
my buffer acted as a vector of vec4s. In other parts of the
application other than the cloth simulation, you may also see
me pack a struct consisting of a vec3 and a constant into a
single vec4 for this reason (BoundingVolume structs in Plane
and Sphere).

There is another solution to this issue without aligning the
DOF vector to 16 bytes. Instead of having the GPU read the
buffer as an array of vec4s/vec3s, I could pass the buffer to
the GPU as an array of floats (avoiding the alignment issue
entirely). Then the vertex stream for rendering for the shaders
(specifically the highlight shader since the DOF positions
must be read as a SSBO instead of a vertex stream) would
be the indices of the particles themselves. In the highlight
shader, I could use the particle indices to compute the indices
of the components of each DOF for that particle.

Another subtlety is numerous amount of calls that
look-alike, but do very different things. The DOF vec-
tor in the cloth simulation is an array of double pre-
cision floats (for accuracy and precision). In the begin-
ning, I thought, for rendering, the vertex attribute format
was specified with glVertexAttribFormat using the
type parameter GL DOUBLE. However, the correct call used
to pass an array of doubles in as a vertex stream is
glVertexAttribLFormat [15]. Of course, the type cast
would still need to be done in the vertex shader since
the vertex shader output for positions (gl Position) is
specified as a float type. I unfortunately realized this too
late (it’s a one character difference!), and therefore it is not
implemented.

Finally, I initially proposed to use OpenGL compute
shaders to do the cloth simulation on the GPU. The DEP

algorithm (save for the matrix solve) is embarassingly par-
allelizable, so it would be a good candidate for a compute
shader. However, OpenGL does not support matrix opera-
tions beyond 4 by 4 dimensions, which means I would need
to implement this myself. The conjugate gradient solve [16]
is also a parallelizable operation, but this requires significant
time to debug (and GPU debugging is much different than
CPU debugging since there is no way to step through
programs). I concluded that this is a huge undertaking, so
I decided to stick with the CPU implementation.

B. Monotlithic rendering architecture

As more types of objects are supported by my renderer,
I found the architecture of the renderer to be monolithic.
This is natural since the renderer contains all the logic for
rendering every single object. However, this makes adding
new features to the renderer difficult. For instance, when
adding support for rendering particle systems, the renderer
must be have a new vertex array object for it and new logic
for the rendering. I had to scroll through lots of code and
make sure that my particle system rendering did not intefere
with the rendering of other objects. A more pronounced
example is the support for instancing and indirect draw calls
with culling. Because of the way each call is structured and
the way data is supplied, I had to disable materials and non
instanced rendering when debugging the application. This
does make sense though because these features are involved
in the method of rendering objects and are core to the
rendering algorithm. But if anything, a lesson learned here is
echoed by a central idea: there are no zero cost abstractions
[17]. Because I decided to make my renderer data-oriented,
I now burden myself with the explicit handling of data and
all the rendering logic in the renderer.

C. Lack of oversight

If one were to read the code for the rendering, they may
get confused about why I made a few questionable decisions.
For starters, I stopped implementing destructors at one point.
This is because I assumed that the lifetime of my objects
were the same as the lifetime of the application. This is a bad
assumption to make because it is possible that the application
may need to be extended to support more features, and the
objects may need to be destroyed and recreated. This is
especially true for the cloth simulation because it makes it
impossible for me to reset the simulation without restarting
the application. Because I didn’t implement destructors for
the cloth simulation objects, if I did delete the cloth simula-
tion objects, there would be memory leaks (from the opengl
objects not being deleted). After realizing this, I swear would
never do this in production code, nor again.

Another issue is the inconsistent usage of OpenGL types.
This isn’t a problem as long as my assumptions about what
sizes the types I’m using align with the ground truth, or
in other words, I support only a single platform. But it
is important to note that C++ (as well as OpenGL) are
specifications that are implemented on the platform they are
running on. A GLuint is guaranteed to be 32 bits across all



Fig. 5: A simulation of a cloth with 576 nodes that has
reached a degenerate state

systems, but an unsigned int may sometimes be 64 bits
or 32 bits depending on your platform’s C++ implementation.
This isn’t a huge issue, since the intended main user of my
renderer is only myself, but it is important to think about
when writing production code.

D. Degeneracies in the Cloth simulation

It is known that the DEP/S algorithm is prone to some
degeneracies, such as when an edge collapses or when the
altitude collapses [18]. This may manifest int the calculation
as a division by zero error during the solve, an infinite loop
(the error never reaches the desired tolerance), or the cloth
visually becomes a cloud of points (see Fig. 5). These may
arise when the solver is unable to reach a valid solution.
This is more common in simulations with more DOFs as
there is more freedom for numerical instability to occur. In
my own tests, the most nodes I found that would reach the
resting state without reaching numerical instability is 529
nodes (1575 DOFs, side length = 22). Of course, numerical
instability could be mitigated by using a smaller timestep, but
this would slow down the simulation (more time steps per
second and more work to compute the next position at the
next second). Another potential solution would be to check
the solver solution before it updates the DOF vector. If the
solution is degenerate, special care can be taken (i.e. halve
the time step used for the rest of the iterations). Regardless,
this problem requires more investigation to find a more robust
solution.

IV. FUTURE WORK

In addition to resolving the issues above at some point in
my life, I have a few more ideas I believe the renderer would
benefit from. These ideas are the following:

• Implement a more robust particle system
• Implement occlusion culling, LOD systems, and other

culling algorithms
• Use a triangle instead of a quad for post-processing

(slightly more efficient)
• Implement shader graphs for post-processing
• Implement lighting, shadows, and reflections
• Implement physically based rendering and deferred

shading

• Screen space reflections, ambient occlusion, and global
illumination

• Rename the variables to be more descriptive
• Use a compute shader for the cloth simulation
• Implement raytracing for the renderer
• Use Vulkan
Each of these bullet points are a feat on their own (I

am aware having all these features is overly ambitious),
but I think of most interest would be the last bullet point.
Vulkan [19], a graphics API developed and managed by
the Khronos Group, is a verbose API that exposes much
of the GPU’s capabilities to the programmer. It is a low-
level API that provides more control over the GPU pipeline,
which opens up opportunities for reducing CPU overhead
and optimizations. Vulkan is also a more modern API than
OpenGL, and it is more likely to be supported by future
hardware. But most importantly, it (along with DirectX
12, Metal, and WebGPU) are APIs that have been taking
off in the industry as OpenGL is being deprecated from
platforms like Apple [20]. I believe exposing myself to
a more verbose API would further my understanding of
graphics hardware more than OpenGL ever could and make
me a more competitive candidate for a graphics programming
position. Thus, I believe for now, the next step in my renderer
may be to future proof my renderer by porting it to Vulkan.

V. CONCLUSION

In this report, I have discussed the design, implementation,
and features of my capstone project, AlienGLRenderer. I
have highlighted the issues I encountered during its develop-
ment and what future work lies ahead, including expressing
my desire to port this renderer to Vulkan. The project has
been a valuable learning experience, allowing me to deepen
my understanding of computer graphics and OpenGL. Mov-
ing forward, I aim to address the identified issues, implement
additional features, and explore more advanced graphics
APIs to further enhance the capabilities of AlienGLRenderer
and my knowledge.



Algorithm 1 Discrete Elastic Plates
Require: q(ti), q̇(ti) DOFs and velocities at ti

e(m), h(n) m edges and n hinges present in the plate
m,M masses of each particle (as a vector and matrix)
lk, ks undeformed length / stretching for each edge
θ̄, kb rest angles of each hinge, bending stiffness
∆t time step
fext external forces
free index Index of the free DOFs

Ensure: q(ti+1), q̇(ti+1) DOFs and velocities at t = ti+1

1: function COMPUTE STRETCHING(q, e, lk, ks)
2: f stretch,Jstretch ← 0, 0 Initialize
3: for i← 1 to m do
4: x0, x1 ← q(e(k, 1)), q(e(k, 2)) Get DOFs of particles in edges
5: fgrad,Jhess ← GRADES HESSES(x0,x1, lk(i), ks(i)) Refer to Appendix of [21]
6:
7: f stretch(e(k))← f stretch(e(k))− fgrad Update total force/Jacobian
8: Jstretch(e(k), e(k))← Jstretch(e(k), e(k))− Jhess

9: return f stretch,Jstretch

10:
11: function COMPUTE BENDING(q, h, kb)
12: fbend,Jbend ← 0, 0 Initialize
13: for i← 1 to n do
14: x0, x1, x2, x3 ← q(e(k, 1)), q(e(k, 2)), q(e(k, 3)), q(e(k, 4)) Get DOFs of particles in hinges
15: fgrad,Jhess ← GRADEB HESSEB(x0,x1,x2,x3, lk(i), ks(i)) Refer to Appendix of [21]
16:
17: fbend(e(k))← fbend(e(k))− fgrad Update total force/Jacobian
18: Jbend(e(k), e(k))← Jbend(e(k), e(k))− Jhess

19: return fbend,Jbend

20:
21: function DISCRETE ELASTIC PLATES(q, q̇)
22: Guess: q(1)(ti+1)← q(ti)
23: n← 1
24: while error > tolerance do
25:
26: f stretch,Jstretch ← COMPUTE STRETCHING(q, e, lk, ks)
27: fbend,Jbend ← COMPUTE BENDING(q, e, lk, ks)
28:
29: f tot ← fbend + f stretch + fext Aggregate forces
30: f ← 1

∆tm⊙
[

1
∆t

[
q(n) − q(1)

]
− q̇

]
− f tot

31:
32: Jtot ← Jbend + Jstretch Aggregate Jacobians
33: J← 1

∆tM − Jtot

34:
35: ffree ← f(free index)
36: Jfree ← J(free index,free index)
37:
38: ∆qfree ← J−1

freeffree
39: q(n+1)(free index)← q(n)(free index)−∆qfree Update free DOFs
40: error← sum(|ffree|)
41: n← n+ 1
42:

43: q(ti+1)← q(n)(ti+1) Update DOFs for next time step
44: q̇(ti+1)← q̇(n)(ti+1)
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